
8. Concluding Remarks

Frequent introduction of new products has created challenges in managing supply chains.

This paper studies the effect of sharing upstream information in a periodic-review inventory

system composed of a retailer and a manufacturer. The manufacturer introduces new and

improved products over time by using a solo-roll strategy. The cost parameters and demand

distributions are age-dependent. We devise an optimal supply chain contract that coordi-

nates the supply chain regardless of whether the information is shared or not. We explicitly

derive the parameters for this optimal contract. Under the optimal contract, we assess the

effect of sharing the upstream information about new product introduction in the supply

chain. We show that information sharing always improves the profits of both supply chain

partners if the supply chain is coordinated. But if the supply chain is not coordinated, this

may not be true. Our research could be valuable to industries with declining prices and

complements the literature on information sharing and product rollover.

Appendices

A. Derivation of R(i, x)

Define V (i, x) as the retailer’s optimal total expected discounted profit attainable starting

with state (i, x). We find

V (i, x) = max
y≥x

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−wi(y − x) + riE[min(y, Di)] − hiE(y − Di)
+

+β(1 − qi)pi+1E(y − Di)
+

+β

[
qi(si+1E(y − Di)

+ + V (0, 0))

+(1 − qi)EV (i + 1, (y − Di)
+)

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (A.1)

Inside the optimization operator, wi(y − x) is the procurement cost; riE[min(y, Di)] is the

expected one-period sales revenue; hiE(y − Di)
+ is the expected one-period holding cost.

With probability qi, the following period is an introduction period and the current cycle

ends. The leftover inventory will be returned to the manufacturer at buyback price si+1 per

unit and the retailer’s system re-starts in state (0,0). With probability 1 − qi, the following
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period is not an introduction period and the age of the initial inventory at the beginning

of the following period will be i + 1. So the system enters state (i + 1, (y − Di)
+) and the

retailer receives a price protection fee of pi+1E(y − Di)
+.

Since wix is a constant for given (i, x), we apply the classic technical trick developed

in Veinott (1966) to reformulate (A.1). Let R(i, x) = V (i, x) − wix, where R(i, x) is the

maximal expected discounted profit assuming that we are charged for the initial inventory

at the cost rate wi. With some algebra, we can re-write the dynamic programming problem

for the retailer with age i ≥ 0 and initial inventory x ≥ 0 as follows:

R(i, x) = max
y≥x

{
gR(i, y) + β[(1 − qi)ER(i + 1, (y − Di)

+) + qiR(0, 0)]
}

where

gR(i, y) = (ri − wi)E[min(y, Di)] − [hi + wi − βqisi+1 − β(1 − qi)(wi+1 + pi+1)]E(y − Di)
+.

Similar approach can be used to derive T (i, x), Rs(i, x, j) and T s(i, x, j). We directly

give these expressions in the text and omit the intermediate procedures.

B. Optimality Equations with Age-independent Data

For the baseline model, the optimality equation is

T (x) = max
y≥x

{
g(y) + β[(1 − q)ET ((y − D)+) + qT (0)]

}
, (B.1)

where the myopic function is

g(y) = (r − c)E[min(y, D)] − [h + c − βqb − β(1 − q)c]E(y − D)+. (B.2)

The optimal solution for T (x) is myopic, i.e, y∗ = F−1( r−c
r+h−βqb−β(1−q)c

).

For the information-sharing model, when j = 1, the optimality equation for the supply

chain is

T s(x, 1) = max
y≥x

{
(r − c)E[min(y, D)] − (c + h − βb)E(y − D)+

+qβRs(0, 1) + (1 − q)βRs(0, 0)

}
, (B.3)
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when j = 0, the optimality equation is

T s(x, 0) = max
y≥x

{
(r − c)E[min(y, D)] − (c + h − βc)E(y − D)+

+βqET s((y − D)+, 1) + β(1 − q)ET s((y − D)+, 0)

}
. (B.4)

The optimal solution for T s(x, 1) is myopic but that for T s(x, 0) is not myopic and needs to

be solved by iteration.

C. Proof of Lemma 1

To facilitate the analysis, we truncate R(i, x) to R(n)(i, x), where R(n)(i, x) is the retailer’s

maximal expected profit starting in state (i, x) when there are n periods remaining. When

n = 1,

R(i, x) = max
y≥x

{gR(i, y)} = max
y≥x

{
L(1)(i, y)

}
.

It is well-known that for any given i, gR(i, y) is a newsvendor function with profit margin,

ri −wi, and overstock cost, oi. Under Assumption 1, we see that ri −wi and oi are positive.

Since the density function fi(·) > 0, it can be shown that gR(i, y) is strictly concave in y for

any given i. Solving
∂gR(i, y)

∂y
= 0,

we have

y
(1)
i = F−1

i (
ri − wi

ri − wi + oi

).

The optimal inventory policy is to order-up-to y
(1)
i if y

(1)
i > x; and no order is placed if

y
(1)
i ≤ x. We express H(1)(i, x) as the following.

R(1)(i, x) =

{
L(1)(i, y

(1)
i ) x < y

(1)
i ,

L(1)(i, x) x ≥ y
(1)
i .

Following the above equation, one can verify that for any given i, R(1)(i, x) is non-increasing

and concave in x.

Next, we hypothesize that for some n, R(n)(i, x) is non-increasing and concave in x.
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When there are n + 1 periods remaining, the optimality equation is

R(n+1)(i, x) = max
y≥x

{
gR(i, y) + β[(1 − qi)ER(i + 1, (y − Di)

+) + qiR(0, 0)]
}

= max
y≥x

{
L(n+1)(i, y)

}
.

We shall prove that L(n+1)(i, y) has two properties:

(i) L(n+1)(i, y) → −∞ when y → ∞;

(ii) L(n+1)(i, y) is strictly concave in y for any given i.

The first derivative of gR(i, y) with respect to y is

∂gR(i, y)

∂y
= (ri − wi)(1 − Fi(y)) − oiFi(y).

We see that when y → ∞, ∂gR(i,y)
∂y

→ −oi and gR(i, y) → −∞. We also know that R(n)(i +

1, (y − Di)
+) is non-increasing in y. Hence, when y → ∞, L(n+1)(i, y) → −∞. This proves

the first property of L(n+1)(i, y).

Note that (y − d)+ is a convex and non-decreasing function of y for any given d. By

the induction hypothesis, R(n)(i + 1, x) is non-decreasing and concave in y. Using the fact

that if f(y) is non-increasing and concave in y and g(y) is non-decreasing and convex in y,

then f(g(y)) is non-increasing and concave in y. (Using the chain rule twice, one can show

that the second derivative of f(g(y)) is non-positive). We conclude that for any realized

Di = d, R(n)(i + 1, (y − d)+) is non-increasing and concave in y. Since the expectation

operator preserves the concavity and non-increasing property, ER(n)(i + 1, (y − Di)
+) is

non-increasing and concave in y. This further implies that L(n+1)(i, y) is a strictly concave

function of y (since gR(i, y) is strictly concave in y). This proves the second property of

L(n+1)(i, y).

The two properties of L(n+1)(i, y) guarantee that there exist a unique solution (denoted

by y
(n+1)
i ) that maximizes L(n+1)(i, y). The optimal inventory policy is to order-up-to y

(n+1)
i

if y
(n+1)
i > x, and not to order if y

(n+1)
i ≤ x. We express R(n+1)(i, x) as

R(n+1)(i, x) =

{
L(n+1)(i, y

(n+1)
i ) x < y

(n+1)
i ,

L(n+1)(i, x) x ≥ y
(n+1)
i .
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Using the strict concavity of R(n+1)(i, y) in y, one can verify that for any given i, R(n+1)(i, x)

is non-increasing and concave in x. This completes the proof of induction.

Finally, we let n → ∞ and L(n)(i, y) → L(i, y). We conclude that L(i, y) is concave

in y for any given i, thus, an age-dependent base-stock policy is optimal.

D. Proof of Lemma 3

Notice that if c
d

= e
f

= ρ, then

ρ =
cX + eY

dX + fY
,

where c, d, e, f , X, Y are non-zero numbers. Recall that

gR(i, y) = (ri − wi)E[min(y, Di)] − oiE(y − Di)
+

and that

g(i, y) = (ri − c)E[min(y, Di)] − (hi + c − ki)E(y − Di)
+.

We immediately see that when

ri − wi

ri − c
=

oi

hi + c − ki

= ρ, (D.1)

it holds that gR(i, y) = ρg(i, y) for any i and y.

E. Proof of Proposition 1

To facilitate the analysis, we truncate R(i, x) to R(n)(i, x), where R(n)(i, x) is the retailer’s

maximal expected profit starting in state (i, x) when there are n periods remaining. When

n = 1, from the Proof of Lemma 1, we see that the optimal inventory policy is to order-up-to

z
(1)
i if z

(1)
i > x; and no order is placed otherwise, where z

(1)
i is

z
(1)
i = F−1

i (
ri − wi

ri − wi + oi

).

27



Likewise, we truncate T (i, x) to T(n)(i, x), where T(n)(i, x) is the supply chain maximal ex-

pected profit starting in state (i, x) when there are n periods remaining. When n = 1,

T(1)(i, x) = max
y≥x

{g(i, y)} .

Solving the first order condition, we have

y
(1)
i = F−1

i (
ri − c

ri + hi − ki

).

The optimal inventory policy is to order-up-to y
(1)
i if y

(1)
i > x; and no order is placed

otherwise. When equation (4.6) is true, it can be seen that

ri − w∗
i

ri − w∗
i + o∗i

=
ri − c

ri + h∗
i − k∗

i

.

So y
(1)
i = z

(1)
i (i.e., the supply chain is coordinated). As a direct result of Lemma 3, we see

that R(1)(i, x) = ρT(1)(i, x) for any i and x. Next, we hypothesize that for some n, it holds

that R(n)(i, x) = ρT(n)(i, x) for any i and x. When there are n + 1 periods remaining, the

optimality equation for the retailer is

R(n+1)(i, x) = max
y≥x

{
gR(i, y) + β[(1 − qi)ER(n)(i + 1, (y − Di)

+) + qiR(n)(0, 0)]
}

(E.1)

= max
y≥x

{
ρg(i, y) + β[(1 − qi)ρET(n)(i + 1, (y − Di)

+) + ρqiT(n)(0, 0)]
}

= ρT(n+1)(i, x).

Finally, we let n → ∞ and T(n)(i, x) → T (i, x) and R(n)(i, x) → R(i, x). We conclude that

R(i, x) = ρT (i, x) for any i and x.

F. Proof of Corollary 1

Suppose that ρi is the profit sharing ratio when the age of the cycle is i. From equation

(E.1), we see that

R(n+1)(i, x) = max
y≥x

{
gR(i, y) + β[(1 − qi)ER(n)(i + 1, (y − Di)

+) + qiR(n)(0, 0)]
}

= max
y≥x

{
ρig(i, y) + β[(1 − qi)ρi+1ET(n)(i + 1, (y − Di)

+) + ρ0qiT(n)(0, 0)]
}

.

Because ∂g(i,y)
∂y

�= ∂
∂y

ET(n)(i + 1, (y − Di)
+), we see that only when ρ0 = ρ1 = ... = ρ, the

optimal solution for R(n+1)(i, x) equals to that for T(n+1)(i, x).
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G. Proof of Proposition 3

First, suppose that the chain optimal policy for the baseline model is {y∗
i }. In the information-

sharing model, for each pair of (i, j) there exists a corresponding policy that uses y∗
i as the

base-stock level regardless of j. Such a policy is equivalent to ignoring the shared information

and performs as well as the case without information sharing. Hence, when we pay attention

to the shared information and adjust the inventory level accordingly, the supply chain can

do no worse with information sharing than without. This leads to the inequality ET s ≥ ET ,

meaning that the performance of the entire supply chain improves.

Next, under the supply chain contract proposed in Section 4.3, the supply chain profit

is proportionally split between the retailer and manufacturer. For instance, the retailer’s

time-average profit is ρ · ET and ρ · ET s for the baseline and information-sharing model,

respectively. Hence, both the retailer and manufacturer are better off with information

sharing as ET s ≥ ET .

H. Proof of Corollary 2

Suppose that the manufacturer misleads the retailer about j, then the retailer will set the

base-stock level to be ys
il (l = 1−j), which is not optimal for T s(i, x, j). Note that the manu-

facturer’s optimal profit by revealing the truth is (1−ρ) ·T s(i, x, j). Hence, the manufacturer

is worse off by misleading the retailer.
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