Electronic Companion to "Scheduling Support Times for Satellites with Overlapping Visibilities"

Gökçen Arkalı, Milind Dawande, Chelliah Sriskandarajah
University of Texas at Dallas, School of Management, 800 West Campbell Road Richardson, TX 75080-3021
Email: \{gokcen.arkali, milind, chelliah\}@utdallas.edu

Appendix A: Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1: Without loss of generality, we let $a=0$ and $b=L$. The objective function corresponding to a support-time x_{i} for Satellite $S_{i}, i=1,2, \ldots, m$, is

$$
\begin{equation*}
\operatorname{Max} \sum_{i=1}^{m} \Pi_{i}\left(x_{i}\right)=d_{1}\left(1-e^{-\beta_{1} x_{1}}\right)+d_{2}\left(1-e^{-\beta_{2} x_{2}}\right)+\ldots+d_{m}\left(1-e^{-\beta_{m} x_{m}}\right) \tag{8}
\end{equation*}
$$

Since the visibility time-windows for all the satellites are identical, the only restriction on the support-times x_{i} is

$$
\begin{equation*}
x_{1}+x_{2}+\ldots+x_{m}=L \tag{9}
\end{equation*}
$$

Associating a multiplier λ with (9), we form the Lagrangian

$$
\begin{equation*}
\Upsilon\left(x_{1}, x_{2}, \ldots, x_{m}, \lambda\right)=\sum_{i=1}^{m} d_{i}\left(1-e^{-\beta_{i} x_{i}}\right)+\lambda\left(L-\left(x_{1}+x_{2}+\ldots+x_{m}\right)\right) \tag{10}
\end{equation*}
$$

It is easy to see that the first-order optimality conditions: $\partial \Upsilon / \partial x_{i}=0 ; \partial \Upsilon / \partial \lambda=0$ are both necessary and sufficient; the sufficiency follows from the fact that the Hessian matrix (which is diagonal in this case) of the Lagrangian is negative definite (see, e.g., Bazaraa et al. 1993). If $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{m}, \bar{\lambda}\right)$ is the point maximizing the Lagrangian Υ, then we have

$$
\begin{align*}
d_{i} \beta_{i} e^{-\beta_{i} \bar{x}_{i}}-\bar{\lambda} & =0, i=1,2, \ldots, m \tag{11}\\
\bar{x}_{1}+\bar{x}_{2}+\ldots+\bar{x}_{m} & =L \tag{12}
\end{align*}
$$

From (11), we have $\bar{x}_{i}=-\frac{1}{\beta_{i}} \ln \left(\frac{\bar{\lambda}}{\beta_{i} d_{i}}\right), i=1,2, \ldots, m$. Substituting these into (12), we get $\bar{\lambda}$.
Proof of Theorem 1: Consider an arbitrary instance of 3-Partition (Garey and Johnson, 1979).

3-Partition: Given $B \in Z^{+}$, a set $A=\left\{z_{1}, z_{2}, \ldots, z_{3 u}\right\}, z_{i} \in Z^{+}, i=1,2, \ldots, 3 u$ with $B / 4<$ $z_{i}<B / 2$, and $\sum_{z_{i} \in A} z_{i}=u B$, does there exist a partition of A into disjoint subsets $A_{1}, A_{2}, \ldots, A_{u}$ such that (i) $\left|A_{j}\right|=3$, and (ii) $\sum_{z_{i} \in A_{j}} z_{i}=B$ for $1 \leq j \leq u$?

Given an instance of 3-Partition, we construct a specific instance of the decision problem for Problem P_{1} as follows:

Figure 8: An Instance of the Decision Problem Q_{1}

- Consider a set of $4 u$ satellites $M=\left\{S_{i}^{z}\left|1 \leq i \leq 3 u \cup S_{i}^{g}\right| 1 \leq i \leq u\right\}$. For ease of exposition, we let $S^{z}=\left\{S_{i}^{z} \mid 1 \leq i \leq 3 u\right\}$ and $S^{g}=\left\{S_{i}^{g} \mid 1 \leq i \leq u\right\}$. Thus, $M=S^{z} \cup S^{g}$.
- The upper bound of the planning horizon, L, equals $u(B+1)$.
- The time-window of Satellite $S_{i}^{g}, i=1,2, \ldots, u$, is $\left[a_{i}^{g}, b_{i}^{g}\right]=[i(B+1)-1, i(B+1)]$.
- The time-window of Satellite $S_{i}^{z}, i=1,2, \ldots, 3 u$, is $\left[a_{i}^{z}, b_{i}^{z}\right]=[0, L]$.
- The utility functions $\Pi_{i}^{g}\left(x_{i}\right)$ (respectively $\Pi_{i}^{z}\left(x_{i}\right)$; see Figure 9) of Satellites S_{i}^{g} (resp. S_{i}^{z}), for $i=1,2, \ldots, u$ (resp. $i=1,2, \ldots, 3 u$), are as defined below.

1. $\Pi_{i}^{g}\left(x_{i}\right)$ and $\Pi_{i}^{z}\left(x_{i}\right)$ are differentiable and strictly concave (i.e., strictly increasing functions of the support-time x_{i} and $\Pi_{i}^{\prime g}\left(x_{i}\right)$ and $\Pi_{i}^{\prime z}\left(x_{i}\right)$ are strictly decreasing functions of x_{i}).
2. $\Pi_{i}^{z}\left(z_{i}\right)=B+z_{i}, i=1,2, \ldots, 3 u$.
3. $\Pi_{i}^{\prime z}\left(z_{i}\right)=\Pi_{j}^{\prime z}\left(z_{j}\right), 1 \leq i, j \leq 3 u$, where $\Pi_{i}^{\prime z}\left(z_{i}\right)$ is the derivative of the utility function of Satellite S_{i}^{z} at the support-time z_{i}.
4. $\Pi_{i}^{g}(1)=3 B, i=1,2, \ldots, u$.

It is easy to see that the set of functions that satisfy the properties above is nonempty. For example, the functional forms $\Pi_{i}^{g}\left(x_{i}\right)=d_{i}^{g}\left(1-e^{-\beta_{i}^{g} x_{i}}\right)$ and $\Pi_{i}^{z}\left(x_{i}\right)=d_{i}^{z}\left(1-e^{-\beta_{i}^{z} x_{i}}\right)$ satisfy these properties (see Appendix B).

Figure 9: Utility Functions for Satellites S_{i}^{g} and S_{i}^{z}

For this specific instance of Problem P_{1}, consider the following decision problem (see Figure 8). Decision Problem $\left(\mathrm{Q}_{1}\right)$: Does there exist a schedule σ of support-times such that the total utility over the planning horizon $[0, L]$ is at least $7 u B$?

The decision problem Q_{1} is clearly in class NP. Also, it is easy to verify that the construction of Q_{1} can be done in polynomial-time. We now show that there is a schedule σ of support-times such that $\Pi_{\sigma} \geq 7 u B$ if and only if there exists a solution to the 3-Partition problem.

S_{1}^{2}	S_{2}	S_{3}^{2}	S_{1}^{g}	S_{4}^{z}	S_{5}^{z}	S_{6}	
0			-				B+

Figure 10: The Proposed Schedule σ

If part: If there exists a 3-Partition, then there is a schedule σ of support-times with a total utility of $\Pi_{\sigma}=7 u B$. The proposed schedule σ is illustrated in Figure 10. S_{i}^{g} is the only satellite supported in the time slot $[i(B+1)-1, i(B+1)], i=1,2, \ldots, u$. We schedule exactly three satellites from S^{z} in each time slot $[i(B+1)-(B+1), i(B+1)-1], i=1,2, \ldots, u$, having support-times $z_{3 i-2}, z_{3 i-1}, z_{3 i}$ corresponding to 3 -Partition elements with $z_{3 i-2}+z_{3 i-1}+z_{3 i}=B$, $i=1,2, \ldots, u$. Thus, there is no idle-time in the schedule σ; the total utility is $\Pi_{\sigma}=7 u B$.
Only if part: If there exists a support schedule σ_{0} with $\Pi_{\sigma_{0}} \geq 7 u B$, then we prove the existence of a 3-Partition through a series of claims. Consider the following problem.

Problem \mathbf{R}_{1} : Satellites $S_{i}^{z}, i=1,2, \ldots, 3 u$ are all visible during the interval $\left[0, L^{\prime}\right], L^{\prime}=u B$. As before, there is no reconfiguration time. Find an optimum non-preemptive solution which maximizes the total utility.
Claim 1. The optimum solution value (i.e., utility) of Problem R_{1} is $4 u B$ and the unique corresponding schedule is one in which Satellite S_{i}^{z} has a support-time of $z_{i}, i=1,2, \ldots, 3 u$.

Proof: Note that $\left(z_{1}, z_{2}, \ldots, z_{3 u}\right)$ is a feasible solution to Problem R_{1} as $\sum_{i=1}^{3 u} z_{i}=u B$. Moreover, for this solution, the individual utility functions have the same slope, i.e., $\Pi_{i}^{\prime z}\left(z_{i}\right)=\Pi_{j}^{\prime z}\left(z_{j}\right)$, $1 \leq i, j \leq 3 u$ and the total utility is $\sum_{i=1}^{3 u}\left(B+z_{i}\right)=4 u B$. It remains to be shown that the solution $\left(z_{1}, z_{2}, \ldots, z_{3 u}\right)$ is optimal.

Consider an optimum solution $\left(\hat{z}_{1}, \hat{z}_{2}, \ldots, \hat{z}_{3 u}\right) \neq\left(z_{1}, z_{2}, \ldots, z_{3 u}\right)$. Since the utility functions are strictly increasing functions of the support-times, we may assume that $\sum_{i=1}^{3 u} \hat{z}_{i}=u B$. There exists two support times $z_{j}<\hat{z}_{j}$ and $z_{k}>\hat{z}_{k}$. Then, we have $\Pi_{j}^{\prime}\left(\hat{z}_{j}\right)<\Pi_{j}^{\prime}\left(z_{j}\right)=\Pi_{k}^{\prime}\left(z_{k}\right)<\Pi_{k}^{\prime}\left(\hat{z}_{k}\right)$, which contradicts the fact that the marginal utilities must be equal at the optimum. Thus, the uniqueness of the optimum solution follows from the strict concavity of the utility functions.

All the following claims prove relevant properties for the required support schedule, σ_{0}, of Problem Q_{1}.

Claim 2. In schedule σ_{0}, it is necessary for a satellite from S^{g} to be supported during the time slot $[i(B+1)-1), i(B+1)], i=1,2, \ldots, u$.
Proof: The utility of providing one time unit of support for Satellite $S_{i}^{g}(3 B)$ is much larger than providing the same support for Satellite S_{i}^{z} (see Figure 9). Suppose only $(u-1)$ satellites from S^{g} are provided support of one unit time each. Then, the total utility for this scenario is
at most $3(u-1) B+4 u B+\left(B+z_{i}\right)$. The first term is the contribution to the utility of the $(u-1)$ satellites of S^{g}. The second term, due to Claim 1, is the maximum contribution that can be obtained from the satellites in S^{z}. The third term is the upper bound on the maximum utility for a satellite in S^{z} for one unit of time. Since $3(u-1) B+4 u B+\left(B+z_{i}\right)<7 u B$, all the satellites in $S^{g}, i=1,2, \ldots, u$, must be supported during the entire duration that they are available.

It follows from the above claim that satellites in S^{z} can only be supported in the time slots $[i(B+1)-(B+1), i(B+1)-1], i=1,2, \ldots, u$. Suppose each satellite S_{i}^{z} is supported for an amount of time, \hat{z}_{i}, where $\hat{z}_{i} \geq 0$. Since the utility function is a continuous and increasing function of time, the constraint on the sum of support-times is $\hat{z}_{1}+\hat{z}_{2}+\ldots+\hat{z}_{3 u-1}+\hat{z}_{3 u}=u B$. Claim 3. The total contribution to the utility of the Satellites $S_{i}^{z}, i=1,2, \ldots, 3 u$ must be at least $4 u B$.

Proof: Since the satellites in S^{g} contribute a total utility of $3 u B$, the utility contribution of satellites in $S^{z}, i=1,2, \ldots, 3 u$ must be at least $4 u B$.

Based on Claims 1 and 3, we infer that $\hat{z}_{i}=z_{i}, i=1,2, \ldots, 3 u$, and $z_{1}+z_{2}+\ldots+z_{3 u-1}+z_{3 u}=$ $u B$. Thus, the total utility, $\Pi_{\sigma_{0}}$, equals $7 u B$.

Claim 4. There must be exactly three satellites in $S_{i}^{z}, i=1,2, \ldots, 3 u$, that are supported in each time slot $[i(B+1)-(B+1), i(B+1)-1], i=1,2, \ldots, u$.

Proof: From the discussion above, it follows that each satellite in S_{i}^{z} is supported for a duration z_{i}, and $z_{1}+z_{2}+\ldots+z_{3 u-1}+z_{3 u}=u B$. Thus, there is no idle-time in the required schedule σ_{0}. If only two satellites were served in the time slot, $[i(B+1)-(B+1), i(B+1)-1], i=$ $1,2, \ldots, u$, then there would be an idle-time in this slot as $z_{i}<B / 2$. Four satellites cannot be served in any time slot $[i(B+1)-(B+1), i(B+1)-1], i=1,2, \ldots, u$, since $z_{i}>B / 4$. Thus, exactly three satellites whose total duration equals B are supported in each time slot $[i(B+1)-(B+1), i(B+1)-1], i=1,2, \ldots, u$. Therefore, there exists a 3-partition of A into disjoint subsets $A_{1}, A_{2}, \ldots, A_{u}$ such that, for $1 \leq j \leq u, \sum_{z_{i} \in A_{j}} z_{i}=B$ and $\left|A_{j}\right|=3$.

Appendix B: Existence of the Functions Required in the Proof of Theorem 1

Given positive constants B and $z_{i}, i=1, \ldots, 3 u$ (specified by an arbitrary instance of 3 -PARTITION),
the construction in Theorem 1 requires the existence of functions $\Pi_{i}^{z}: x_{i} \rightarrow \Re_{+}, i=1, \ldots ., 3 u$, that satisfy the following properties:

1. $\Pi_{i}^{z}, i=1, \ldots, 3 u$, are differentiable, increasing functions of the support-time x_{i}.
2. $\Pi_{i}^{z}\left(z_{i}\right)=B+z_{i}, i=1,2, \ldots, 3 u$.
3. $\Pi_{i}^{\prime z}\left(z_{i}\right)=\Pi_{j}^{z}\left(z_{j}\right), 1 \leq i, j \leq 3 u$.

We show below, via a constructive proof, that there exist functions of the form $\Pi_{i}^{z}\left(x_{i}\right)=d_{i}(1-$ $e^{-\beta_{i} x_{i}}$) that satisfy the properties above. For this functional form, Property (3) becomes

$$
d_{i} \beta_{i} e^{-\beta_{i} z_{i}}=d_{j} \beta_{j} e^{-\beta_{j} z_{j}}, 1 \leq i, j \leq 3 u
$$

It is sufficient to explain the construction for two such functions, say Π_{1}^{z} and Π_{2}^{z}; the construction can be repeated to obtain the other functions $\Pi_{i}^{z}, i=3,4, \ldots, 3 u$.

Define $d_{1}=\frac{B+z_{1}}{1-e^{-\beta} z_{1}}$. Let $\beta_{1}>0$ be such that $C=d_{1} \beta_{1} e^{-\beta_{1} z_{1}}=\frac{\beta_{1} e^{-\beta_{1} z_{1}}}{1-e^{-\beta_{1} z_{1}}}\left(B+z_{1}\right) \leq 3$. This is possible since $\frac{\beta_{1} e^{-\beta_{1} z_{1}}}{1-e^{-\beta_{1} z_{1}}}$ is a decreasing function of β; note that $\beta_{1}=O\left(\frac{\log \left(B+z_{1}\right)}{z_{1}}\right)$ suffices for our purpose. Note that Π_{1}^{z} satisfies Properties (1) and (2). The reason for bounding C from above is the following.

CLAIM: $z_{i} C<B+z_{i}, i=2,3, \ldots 3 u$.
Proof: Note that $2 z_{i}<B$ (refer to the proof of Theorem 1 in Appendix A). Thus, $z_{i} C \leq 3 z_{i}<$ $B+z_{i}$.

It follows from the claim above that there exists $\beta_{2}>0$ satisfying

$$
\begin{equation*}
C e^{\beta_{2} z_{2}}=\left(B+z_{2}\right) \beta_{2}+C \tag{13}
\end{equation*}
$$

since the slope (with respect to β_{2}) at $\beta_{2}=0$ of the left-hand-side (resp., right-hand-side) of (13) is $z_{2} C$ (resp., $B+z_{2}$). Using

$$
\begin{equation*}
d_{2}=\frac{C e^{\beta_{2} z_{2}}}{\beta_{2}} \tag{14}
\end{equation*}
$$

(13) can be re-written as

$$
\begin{equation*}
d_{2}\left(1-e^{-\beta_{2} z_{2}}\right)=B+z_{2} \tag{15}
\end{equation*}
$$

Thus, our preceding discussion shows the existence of $\beta_{2}>0$ satisfying (15). The corresponding value of d_{2} can now be obtained from (14). We thus have $\Pi_{2}^{z}=d_{2}\left(1-e^{-\beta_{2} x_{i}}\right)$ satisfying Property 3 (with respect to Π_{1}^{z}) and Properties 1, 2. The construction of the remaining functions $\Pi_{i}^{z}, i=$ $3,4, \ldots, 3 u$, is similar.

Appendix C: Proofs of Theorem 2, Lemma 2, and Theorem 3

Proof of Theorem 2: As with Problem $\mathrm{P}_{1}, 3$-Partition can be reduced to the decision problem corresponding to P_{2}. The construction is exactly the same as in the proof of Theorem 1 with the following changes to ensure that the schedule of Figure 10 remains the unique optimum: (1) the reconfiguration time r satisfies $0<r<\min _{i}\left\{\frac{B+z_{i}}{C}-z_{i}\right\}$. Note that $\frac{B+z_{i}}{C}-z_{i}>0, i=$ $1,2, \ldots, 3 u$ (refer to Appendix B), (2) the planning horizon, $L=u(B+1)+4 u r$, (3) the timewindow of Satellite $S_{i}^{g}, i=1,2, \ldots, u$, is $\left[a_{i}^{g}, b_{i}^{g}\right]=[i(B+4 r+1)-r-1, i(B+4 r+1)]$ and the time-window of Satellite $S_{i}^{z}, i=1,2, \ldots, 3 u$, is $\left[a_{i}^{z}, b_{i}^{z}\right]=[0, L]$, and (4) the planning horizon L^{\prime} for Problem R_{1} is $L^{\prime}=u B+3 u r$.

Proof of Lemma 2: Without loss of generality, consider the situation illustrated in Figure 11: The time window for Satellite S_{j} starts at time q_{k}; satellites S_{i} and S_{j} are concurrently visible during the interval t_{k+1}. Let c_{i} and c_{j} be the associated linear coefficients of the utility functions for satellites S_{i} and S_{j}, respectively. Suppose in an optimum solution ρ, the switching of support from Satellite S_{i} to Satellite S_{j} takes place at $a, 0<a<q_{k+1}-q_{k}$, units after Satellite S_{j} becomes visible at time q_{k} (see Figure 11).

Figure 11: Satellite Switching Illustrating Lemma 2

Case 1: $c_{i}=c_{j}$. In this case, the total utility obtained by switching at time $q_{k}-r$ or at the end of interval t_{k} (i.e., at time q_{k}) or at time $q_{k+1}-r$ or at the end of interval t_{k+1} (i.e., at time q_{k+1})
is same as the total utility obtained by switching at time $q_{k}+a$. Hence, we obtain an alternate optimum solution ρ^{\prime} by switching at time $q_{k}-r, q_{k}, q_{k+1}-r$ or q_{k+1} rather than at time $q_{k}+a$. Case 2: $c_{i}<c_{j}$. If the switching took place at time $q_{k}-r$, the total utility would be [$c_{j}-$ $\left.\left.c_{i}\right)(a+r)\right]>0$ units larger than the solution given by ρ. Thus, ρ cannot be an optimum solution. Case 3: $c_{i}>c_{j}$. If the switching took place at the end of the interval t_{k+1} (i.e., at time q_{k+1}), the total utility would be larger than that of ρ by $\left[\left(c_{i}-c_{j}\right)\left(q_{k+1}-q_{k}-a\right)\right]>0$ units. This, thus, contradicts the optimality of ρ.

Proof of Theorem 3: First, by Lemma 2, it is sufficient to optimize over the set of schedules represented in G. Suppose a longest path in G visits Satellite S_{i} during some interval t_{k}, then visits Satellite S_{j} during intervals t_{k+1} through t_{l-1}, and then revisits S_{i} again during interval t_{l}. Since the support switched from S_{i} to S_{j} in interval t_{k+1}, the utility (per unit time) offered by Satellite S_{j} is strictly higher than that of Satellite S_{i} (recall our assumption that $c_{i} \neq c_{j}, i \neq$ $j, 1 \leq i, j \leq m)$. Also, since $\left[a_{i}, b_{i}\right] \nsubseteq\left[a_{j}, b_{j}\right], i \neq j, 1 \leq i, j \leq m$, Satellite S_{j} must be available either during interval t_{k}, or interval t_{l}, or both; replacing the support of S_{i} by S_{j} in such an interval provides a strictly higher profit, thereby contradicting the optimality of the path. The proof is similar for the more general case where the longest path visits an arbitrary subset of satellites before revisiting S_{i}.

Appendix D: Proofs of Lemma 3 and Theorem 5

Proof of Lemma 3: Recall that $M=\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$. Initially, the set Ω is empty. We now show that at least one new satellite is added to Ω in Step 3 during each iteration. Suppose none of the satellites in Γ is included in Ω in Step 3 of an iteration. For simplicity of exposition, we assume $\Gamma=\left\{S_{k}\right\}$. As before, let μ_{k} be the set of satellites serviced during the time-window $\left[a_{k}, b_{k}\right]$ of S_{k}, and let the optimum value of the LP in Step 1 be y. Note that $y=y_{k}$ as $S_{k} \in \Gamma$, where y_{k} is the log-slope of S_{k} at the corresponding support-time x_{k}. Since S_{k} is not included in Ω at Step 3, there exists $S_{i} \in \mu_{k}, i \neq k$, whose log-slope (at its corresponding support-time x_{i}) is $y_{i}<y$.

Consider the following perturbation of the current solution in the time-window $\left[a_{k}, b_{k}\right]$: for an infinitesimally small $\theta>0$, we decrease (resp. increase) the support of S_{i} (resp. S_{k}) in
$\left[a_{k}, b_{k}\right]$ by θ. The resulting feasible solution has an objective function value smaller than y, thus contradicting the optimality of y. The proof for $|\Gamma|>1$ is similar. Since $|M|=m$, the result follows.

Proof of Theorem 5: As shown in Lemma 4, Algorithm OptP_{3} provides a solution in polynomialtime. We now show that this solution is, in fact, optimum. Let the objective function values obtained at $\ell^{t h}$ iteration of Step 1 be $y^{\ell *}$. From Lemma 5, we have $y^{1 *} \geq y^{2 *} \geq \ldots \geq y^{u *}, u \leq m$. Let the corresponding satellite support-times be $x_{j}^{*}, j=1,2, \ldots, m$. Without loss of generality, we assume that the log-slopes $\left(y_{j}^{*}\right)$ corresponding to the support-times x_{j}^{*} are in non-increasing order: $y_{1}^{*} \geq y_{2}^{*} \geq \ldots \geq y_{m}^{*}$. Note that if support-time x_{j}^{*} of Satellite S_{j} is determined by Algorithm OptP_{3} at the end of $\ell^{t h}$ iteration of Steps 1 and 3, then $j \geq \ell$ and $y_{j}^{*}=y^{\ell *}$.

Consider an optimum vector, $x^{o}=\left(x_{1}^{o}, x_{2}^{o}, \ldots, x_{m}^{o}\right)$, of the support-times. We will show that $x^{o}=x^{*} \equiv\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right)$. It is important to note that this does not imply the uniqueness of the optimum solution: the support-time x_{j}^{*} is the aggregate support-time for Satellite S_{j}. Showing $x^{o}=x^{*}$ proves that the aggregate support-times for the satellites are the same in any optimum solution. There can, however, be multiple schedules that generate the same aggregate support-times for all the satellites.

To proceed with our proof, let y_{j}^{o} denote the log-slopes corresponding to the support-times $x_{j}^{o}, i=1,2, \ldots, m$. Let S_{p} be the first satellite for which $x_{p}^{o} \neq x_{p}^{*}$; thus $x_{r}^{o}=x_{r}^{*}, r=1,2, \ldots, p-1$. We consider two cases: $x_{p}^{o}<x_{p}^{*}$ and $x_{p}^{o}>x_{p}^{*}$.

- Case 1: $x_{p}^{o}<x_{p}^{*}$. Then, $y_{p}^{o}>y_{p}^{*}$. Let $\epsilon>0$, and $x_{p}^{o}=x_{p}^{*}-\epsilon$. From Lemmas 6 and 7, we have $x_{1}^{o}+x_{2}^{o}+\ldots+x_{m}^{o}=x_{1}^{*}+x_{2}^{*}+\ldots+x_{m}^{*}=L$. Let $q \geq p+1$ be the smallest index such that $x_{q}^{o}=x_{q}^{*}+\delta, \delta>0$. Clearly, $y_{p}^{*} \geq y_{q}^{*}$. Let $0<\theta \leq \min \{\epsilon, \delta\}$. Since $x_{p}^{o}<x_{p}^{*}$ and $x_{q}^{o}>x_{q}^{*}$, we have $y_{p}^{o}>y_{p}^{*}$ and $y_{q}^{*}>y_{q}^{o}$. Thus, $y_{p}^{o}>y_{p}^{*} \geq y_{q}^{*}>y_{q}^{o}$. Keeping all other variables fixed, consider the solution obtained by increasing (resp. decreasing) x_{p}^{o} (resp. x_{q}^{o}) by θ. That is, consider the feasible solution vector

$$
\left(x_{1}^{o}, \ldots x_{p-1}^{o}, x_{p}^{o}+\theta, x_{p+1}^{o}, \ldots, x_{q-1}^{o}, x_{q}^{o}-\theta, x_{q+1}^{o}, \ldots, x_{m}^{o}\right)
$$

Since $y_{p}^{o}>y_{q}^{o}$, the increase in utility corresponding to an increase of θ in the supporttime of S_{p} is larger than the decrease in utility corresponding to the decrease of θ in the
support-time of S_{q}. This contradicts the optimality of x^{o}.

- Case 2: $x_{p}^{o}>x_{p}^{*}$. This implies that $y_{p}^{o}<y_{p}^{*}$. Let $\epsilon>0$ and $x_{p}^{o}=x_{p}^{*}+\epsilon$. As before, let $q \geq p+1$ be the smallest index with $x_{q}^{o}=x_{q}^{*}-\delta, \delta>0$. Let $0<\theta \leq \min \{\epsilon, \delta\}$. We consider two subcases:
- Case 2a: $y_{p}^{*}>y_{q}^{*}$. Assume that the support-times of satellites $S_{1}, S_{2}, \ldots, S_{k}, k \geq j$, are fixed until the end of iteration ℓ. We, therefore, have $x_{r}^{o}=x_{r}^{*}, r=1,2, \ldots, p-1$, $x_{p}^{o}>x_{p}^{*}, x_{r}^{o} \geq x_{r}^{*}, r=p+1, \ldots, k, \ldots, q-1$, and $x_{q}^{o}<x_{q}^{*}$. The solution to the LP, corresponding to the first k satellites, in iteration ℓ is $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{p}^{*}, \ldots, x_{k}^{*}\right)$. However, since $y_{p}^{o}<y_{p}^{*}$, the vector $\left(x_{1}^{o}, x_{2}^{o}, \ldots, x_{p}^{o}, \ldots, x_{k}^{o}\right)$ is a better solution (in iteration ℓ). We, therefore, have a contradiction.
- Case 2b: $y_{p}^{*}=y_{q}^{*}$. An argument similar to that in Case 1 shows that $y_{p}^{o}<y_{p}^{*}=y_{q}^{*}<$ y_{q}^{o}. As in Case 1, consider the feasible solution vector

$$
\left(x_{1}^{o}, \ldots x_{p-1}^{o}, x_{p}^{o}-\theta, x_{p+1}^{o}, \ldots, x_{q-1}^{o}, x_{q}^{o}+\theta, x_{q+1}^{o}, \ldots, x_{m}^{o}\right)
$$

As $y_{p}^{o}<y_{q}^{o}$, the increase in utility corresponding to an increase of θ in the support-time of S_{q} is larger than the decrease in utility corresponding to the decrease of θ in the support-time of S_{p}. This contradicts the optimality of x^{o}.

Since the choice of p was arbitrary, we have that $x_{j}^{o}=x_{j}^{*}, j=1,2, \ldots m$. The result follows.

Appendix E: Proof of Theorem 7

Proof of Theorem 7: Consider an arbitrary instance of Even-Odd Partition (EOP) (Garey and Johnson, 1979).

Even-OdD Partition: Given a set $A=\left\{z_{1}, z_{2}, \ldots, z_{2 u-1}, z_{2 u}\right\}$ and $z_{i} \in Z^{+}$for each $i=$ $1,2, \ldots, 2 u$, where $z_{1}<z_{2}<\ldots<z_{2 u-1}<z_{2 u}$ and $\sum_{z_{i} \in A} z_{i}=2 B$, does there exist a partition of A into subsets A_{1} and A_{2} such that $\sum_{z_{k} \in A_{1}} z_{k}=\sum_{z_{k} \in A_{2}} z_{k}=B$, and that each of A_{1}, A_{2} contains exactly one of $z_{2 i-1}, z_{2 i}$ for $i=1,2, \ldots, u$?

Given an instance of Even-Odd Partition (EOP), we can construct a specific instance of the decision problem for Problem P_{4} as follows (see Figure 12).

Figure 12: An Instance of the Decision Problem Q_{4}

- Consider a set of $2 u$ satellites $M=\left\{S_{i} \mid 1 \leq i \leq 2 u\right\}$.
- There is a positive reconfiguration time (r) of duration $2 B$.
- The upper bound of the planning horizon, L, equals $(u-1) r+B$.
- The time-window, $\left[a_{i}, b_{i}\right]$, of $S_{i}, i=1,2, \ldots, 2 u$, is defined as follows: $\left[a_{1}, b_{1}\right]=\left[a_{2}, b_{2}\right]=$ $\left[0, z_{2}\right] ;\left[a_{2 j-1}, b_{2 j-1}\right]=\left[a_{2 j}, b_{2 j}\right]=\left[(j-2) r+z_{2}+\ldots+z_{2 j-2},(j-1) r+z_{2}+\ldots+z_{2 j}\right], j=$ $2,3, \ldots, u-1 ;\left[a_{2 u-1}, b_{2 u-1}\right]=\left[a_{2 u}, b_{2 u}\right]=\left[(u-2) r+z_{2}+\ldots+z_{2 u-2},(u-1) r+B\right]$.
- The properties of the utility functions $\Pi_{i}\left(x_{i}\right), i=1,2, \ldots, 2 u$, are similar to those of the functions Π_{i}^{z} in the proof of Theorem 1 in Appendix A (see Figure 9), and are as defined below.

1. $\Pi_{i}\left(x_{i}\right), i=1,2, \ldots, 2 u$, are differentiable and strictly concave.
2. $\Pi_{i}\left(z_{i}\right)=K+z_{i}, i=1,2, \ldots, 2 u$, where $K>0$.
3. $\Pi_{i}^{\prime}\left(z_{i}\right)=\Pi_{j}^{\prime}\left(z_{j}\right), 1 \leq i, j \leq 2 u$, where $\Pi_{i}^{\prime z}\left(z_{i}\right)$ is the value of the derivative of the utility function of Satellite S_{i} at the support-time z_{i}. Without loss of generality, we assume that this common slope is 1 . That is, $\Pi_{i}^{\prime}\left(z_{i}\right)=1,1 \leq i \leq 2 u$.

The proof of the existence of functions that obey the above properties is similar to that of Theorem 1 (see Appendices A and B).

For this specific instance of Problem P_{4}, consider the following decision problem (see Figure 12).

Decision Problem (\mathbf{Q}_{4}): Does there exist a schedule σ of support-times such that the total utility over the planning horizon $[0, L]$ is at least $u K+B$?

The decision problem Q_{4} is clearly in class NP. Also, it is easy to verify that the construction of Q_{4} can be done in polynomial-time. We now show that there is a schedule σ of support-times such that $\Pi_{\sigma} \geq u K+B$ if and only if there exists a solution to Problem EOP.

Figure 13: Proposed Schedule σ

If part: If there exists an EOP, we prove that there is a support schedule σ with a total utility $\Pi_{\sigma}=u K+B$. Assume $\sum_{z_{k} \in A_{1}} z_{k}=\sum_{z_{k} \in A_{2}} z_{k}=B$. Note that $M=\left\{S_{1}, S_{2}, \ldots, S_{2 u}\right\}$. The time-windows of the satellites $S_{2 j-1}$ and $S_{2 j}, j=1,2, \ldots, u$, are the same. There are u such disjoint intervals. The proposed schedule σ is illustrated in Figure 13. Exactly one satellite $S_{2 j-1}$ (or $S_{2 j}$), $j=1,2, \ldots, u$, is scheduled for the duration of $z_{2 j-1}$ (or $z_{2 j}$) at each disjoint interval t_{j}, $j=1,2, \ldots, u$, where $t_{1}=\left[0, z_{2}\right], t_{j}=\left[(j-2) r+\sum_{r=1}^{j-1} z_{2 r},(j-1) r+\sum_{r=1}^{j} z_{2 r}\right], j=2,3, \ldots, u-1$, and $t_{u}=\left[(u-2) r+\sum_{r=1}^{u-1} z_{2 r},(u-1) r+B\right]$. Since there are $(u-1)$ reconfigurations and $L=(u-1) r+B$, the total support-time cannot be more than B, which is indeed $\sum_{z_{k} \in A_{1}} z_{k}=B$. Recall also that the utility of the satellite $S_{2 j-1}$ (or $S_{2 j}$) for the support-time $z_{2 j-1}$ (or $z_{2 j}$) is $\Pi_{2 j-1}\left(z_{2 j-1}\right)=K+z_{2 j-1}\left(\right.$ or $\left.\Pi_{2 j}\left(z_{2 j}\right)=K+z_{2 j}\right)$. Thus, the total utility $\left(\Pi_{\sigma}\right)$ equals $u K+B$. Note that the first satellite can be reconfigured before time zero, which is ignored here.

Only if part: If there exists a support schedule σ_{0} with $\Pi_{\sigma_{0}} \geq u K+B$, we show that there is an EOP through a series of claims. Since the value of r is large, there is no advantage to preempt and resume the support for any of the satellites in schedule σ_{0}.

Claim 1. There cannot be more than $(u-1)$ reconfigurations during the planning horizon $[0, L]$.
Proof: Since $u r=2 u B$, ur $>L=(u-1) r+B=2 u B-B$. The result follows.
CLAIM 2. At most one of the two satellites $S_{2 j-1}$ and $S_{2 j}$ is supported at each disjoint interval $t_{j}, j=1,2, \ldots, u$.
Proof: Note that the duration of each interval cannot be more than $r+B=3 B$. Since $2 r=4 B>3 B$, at each interval $j, j=1,2, \ldots, u$, there cannot be two reconfigurations to serve two satellites. Thus, at most one of the two satellites (i.e., $S_{2 j-1}$ or $S_{2 j}$) can be supported at each interval $j=1,2, \ldots, u$.

Due to the above claims, at most u satellites can be scheduled. More precisely, at each interval t_{j}, at most one satellite \hat{S}_{j}, where $\hat{S}_{j} \in\left\{S_{2 j-1}, S_{2 j}\right\}$, with support-time $\hat{z}_{j} \geq 0$ can be engaged. Moreover, due to the durations of the intervals, the following constraints must also be satisfied:

$$
\begin{aligned}
\hat{z}_{1} & \leq z_{2} \\
\hat{z}_{1}+\hat{z}_{2} & \leq z_{2}+z_{4} \\
\hat{z}_{1}+\hat{z}_{2}+\ldots+\hat{z}_{j} & \leq z_{2}+z_{4}+\ldots+z_{2 j}, j=3,4, \ldots, u-1 \\
\hat{z}_{1}+\hat{z}_{2}+\ldots+\hat{z}_{u-1}+\hat{z}_{u} & \leq B
\end{aligned}
$$

Recall that the utility function is continuous and an increasing function of the support-time. Thus, in order to maximize the total utility, the sum of the support-times $\hat{z}_{1}+\hat{z}_{2}+\ldots+\hat{z}_{u-1}+\hat{z}_{u}$ must be equal to B, where each \hat{z}_{j} is strictly positive. Now, we consider the following problem.
$\underline{\text { Problem R R }} 4$: The same set of satellites $M=\left\{S_{1}, S_{2}, \ldots, S_{2 u}\right\}$ is visible as in Problem Q_{4}. The functional form of the nonlinear utility function is also same as before. Let $r=0$ and each satellite be visible throughout the entire planning horizon $\left[0, L^{\prime}\right]$, with $L^{\prime}=B$. Find an optimum non-preemptive solution that maximizes the utility subject to the constraint that exactly u satellites - one satellite \bar{S}_{j} from each set, $\left\{S_{2 j-1}, S_{2 j}\right\}, j=1,2, \ldots, u$ - are supported.
Claim 3. If the the optimum solution value (i.e., the maximum utility) of Problem R_{4} is at least
$u K+B$, then the support-time for $\bar{S}_{j}, j=1,2, \ldots, u$ is $\bar{z}_{j} \in\left\{z_{2 j-1}, z_{2 j}\right\}$, with $\bar{z}_{1}+\bar{z}_{2}+\ldots+\bar{z}_{u}=B$. Proof: Consider an optimum vector of support-times $z^{o}=\left(z_{1}^{o}, \ldots, z_{u}^{o}\right) \neq \bar{z}=\left(\bar{z}_{1}, \ldots, \bar{z}_{u}\right)$. Recall that the common slope \bar{s} of all the u satellites at the support-times corresponding to \bar{z} is equal to one. Furthermore, it follows from Lemma 1 and Remark 1 that (i) the slope of all the u satellites at the support-times corresponding to z^{o} is equal, say s^{o}, and (ii) $z_{1}^{o}+\ldots+z_{u}^{o}=B$. Consider the following three cases:
(a) $s^{o}<\bar{s}=1$. Then, $z_{j}^{o}>\bar{z}_{j}, j=1,2, \ldots, u$. The total utility corresponding to support-times $z^{o}, \Pi\left(z^{o}\right)$ can be expressed as follows: $\Pi\left(z^{o}\right)=\Pi(\bar{z})+\Delta_{1}$, where $\Delta_{1}=\sum_{j=1}^{u}\left[\Pi_{j}\left(z_{j}^{o}\right)-\Pi_{j}\left(\bar{z}_{j}\right)\right]$ and $\Pi(\bar{z})=u K+\sum_{j=1}^{u} \bar{z}_{j}$. Since $\bar{s}=1$, we have $\Pi_{j}\left(z_{j}^{o}\right)-\Pi_{j}\left(\bar{z}_{j}\right)<z_{j}^{o}-\bar{z}_{j}, j=1,2, \ldots, u$. Thus, we have

$$
\Pi\left(z^{o}\right)=\Pi(\bar{z})+\Delta_{1}<u K+\sum_{j=1}^{u} \bar{z}_{j}+\left(\sum_{j=1}^{u} z_{j}^{o}-\sum_{j=1}^{u} \bar{z}_{j}\right)=u K+B
$$

This contradicts the assumption that z^{o} is an optimum solution with total utility at least $u K+B$.
(b) $s^{o}>\bar{s}=1$. In this case, $z_{j}^{o}<\bar{z}_{j}, j=1,2, \ldots, u$. The total utility corresponding to supporttimes $z^{o}, \Pi\left(z^{o}\right)$ can be expressed as follows: $\Pi\left(z^{o}\right)=\Pi(\bar{z})-\Delta_{2}$, where $\Delta_{2}=\sum_{j=1}^{u}\left[\Pi_{j}\left(\bar{z}_{j}\right)-\right.$ $\left.\Pi_{j}\left(z_{j}^{o}\right)\right]$ and $\Pi(\bar{z})=u K+\sum_{j=1}^{u} \bar{z}_{j}$. Since $\bar{s}=1$, we have $\Pi_{j}\left(\bar{z}_{j}\right)-\Pi_{j}\left(z_{j}^{o}\right)>\bar{z}_{j}-z_{j}^{o}$, $j=1,2, \ldots, u$. Thus,

$$
\Pi\left(z^{o}\right)=\Pi(\bar{z})-\Delta_{2}<u K+\sum_{j=1}^{u} \bar{z}_{j}-\left(\sum_{j=1}^{u} \bar{z}_{j}-\sum_{j=1}^{u} z_{j}^{o}\right)=u K+B
$$

This, again, contradicts the assumption that the total utility corresponding to z^{o} is at least $u K+B$.
(c) $s^{o}=\bar{s}=1$. The contradictions obtained for the previous two cases imply that this case is the only possibility. It follows that $z_{j}^{o}=\bar{z}_{j}, j=1,2, \ldots, u$. Then, the utility equals $\sum_{j=1}^{u} K+\bar{z}_{j}=u K+B$. Thus, $\sum_{j=1}^{u} \bar{z}_{j}=B$.

CLAIM 4. If $\Pi_{\sigma_{0}} \geq u K+B$, then $\hat{z}_{j}, j=1,2, \ldots, u$, corresponds to an EOP, i.e., $\hat{z}_{j} \in\left\{z_{2 j-1}, z_{2 j}\right\}$, $j=1,2, \ldots, u$.
Proof: Follows immediately from Claims 1-3.

