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Appendix A: Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1: Without loss of generality, we let a = 0 and b = L. The objective function

corresponding to a support-time xi for Satellite Si, i = 1, 2, ...,m, is

Max
m∑

i=1

Πi(xi) = d1(1− e−β1x1) + d2(1− e−β2x2) + . . . + dm(1− e−βmxm) (8)

Since the visibility time-windows for all the satellites are identical, the only restriction on the

support-times xi is

x1 + x2 + . . . + xm = L (9)

Associating a multiplier λ with (9), we form the Lagrangian

Υ(x1, x2, . . . , xm, λ) =
m∑

i=1

di(1− e−βixi) + λ(L− (x1 + x2 + . . . + xm)) (10)

It is easy to see that the first-order optimality conditions: ∂Υ/∂xi = 0; ∂Υ/∂λ = 0 are both

necessary and sufficient; the sufficiency follows from the fact that the Hessian matrix (which is

diagonal in this case) of the Lagrangian is negative definite (see, e.g., Bazaraa et al. 1993). If

(x1, x2, . . . , xm, λ) is the point maximizing the Lagrangian Υ, then we have

diβie
−βixi − λ = 0, i = 1, 2, . . . , m, (11)

x1 + x2 + . . . + xm = L (12)

From (11), we have xi = − 1
βi

ln( λ
βidi

), i = 1, 2, . . . , m. Substituting these into (12), we get λ.

Proof of Theorem 1: Consider an arbitrary instance of 3-Partition (Garey and Johnson,

1979).
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3-Partition: Given B ∈ Z+, a set A = {z1, z2, . . . , z3u}, zi ∈ Z+, i = 1, 2, . . . , 3u with B/4 <

zi < B/2, and
∑

zi∈A zi = uB, does there exist a partition of A into disjoint subsets A1, A2, . . . , Au

such that (i) |Aj| = 3, and (ii)
∑

zi∈Aj
zi = B for 1 ≤ j ≤ u?

Given an instance of 3-Partition, we construct a specific instance of the decision problem

for Problem P1 as follows:

Planning Horizon

gS1
g
uSgS2

B B+1 2B+1 2B+20 u(B+1)-1 u(B+1)

L=u(B+1)0

Figure 8: An Instance of the Decision Problem Q1

• Consider a set of 4u satellites M = {Sz
i |1 ≤ i ≤ 3u ∪ Sg

i |1 ≤ i ≤ u}. For ease of exposition,

we let Sz = {Sz
i |1 ≤ i ≤ 3u} and Sg = {Sg

i |1 ≤ i ≤ u}. Thus, M = Sz ∪ Sg.

• The upper bound of the planning horizon, L, equals u(B + 1).

• The time-window of Satellite Sg
i , i = 1, 2, . . . , u, is [ag

i , b
g
i ] = [i(B + 1)− 1, i(B + 1)].

• The time-window of Satellite Sz
i , i = 1, 2, . . . , 3u, is [az

i , b
z
i ] = [0, L].

• The utility functions Πg
i (xi) (respectively Πz

i (xi); see Figure 9) of Satellites Sg
i (resp. Sz

i ),

for i = 1, 2, . . . , u (resp. i = 1, 2, . . . , 3u), are as defined below.

1. Πg
i (xi) and Πz

i (xi) are differentiable and strictly concave (i.e., strictly increasing func-

tions of the support-time xi and Π′g
i (xi) and Π′z

i (xi) are strictly decreasing functions

of xi).

2. Πz
i (zi) = B + zi, i = 1, 2, . . . , 3u.

3. Π′z
i (zi) = Π′z

j(zj), 1 ≤ i, j ≤ 3u, where Π′z
i (zi) is the derivative of the utility function

of Satellite Sz
i at the support-time zi.
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4. Πg
i (1) = 3B, i = 1, 2, . . . , u.

It is easy to see that the set of functions that satisfy the properties above is nonempty. For

example, the functional forms Πg
i (xi) = dg

i (1− e−βg
i xi) and Πz

i (xi) = dz
i (1− e−βz

i xi) satisfy these

properties (see Appendix B).
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Figure 9: Utility Functions for Satellites Sg
i and Sz

i

For this specific instance of Problem P1, consider the following decision problem (see Figure 8).

Decision Problem (Q1): Does there exist a schedule σ of support-times such that the total

utility over the planning horizon [0, L] is at least 7uB?

The decision problem Q1 is clearly in class NP. Also, it is easy to verify that the construction

of Q1 can be done in polynomial-time. We now show that there is a schedule σ of support-times

such that Πσ ≥ 7uB if and only if there exists a solution to the 3-Partition problem.
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Figure 10: The Proposed Schedule σ
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If part: If there exists a 3-Partition, then there is a schedule σ of support-times with a total

utility of Πσ = 7uB. The proposed schedule σ is illustrated in Figure 10. Sg
i is the only satellite

supported in the time slot [i(B + 1) − 1, i(B + 1)], i = 1, 2, . . . , u. We schedule exactly three

satellites from Sz in each time slot [i(B + 1) − (B + 1), i(B + 1) − 1], i = 1, 2, . . . , u, having

support-times z3i−2, z3i−1, z3i corresponding to 3-Partition elements with z3i−2 + z3i−1 + z3i = B,

i = 1, 2, . . . , u. Thus, there is no idle-time in the schedule σ; the total utility is Πσ = 7uB.

Only if part: If there exists a support schedule σ0 with Πσ0 ≥ 7uB, then we prove the existence

of a 3-Partition through a series of claims. Consider the following problem.

Problem R1: Satellites Sz
i , i = 1, 2, . . . , 3u are all visible during the interval [0, L′], L′ = uB.

As before, there is no reconfiguration time. Find an optimum non-preemptive solution which

maximizes the total utility.

Claim 1. The optimum solution value (i.e., utility) of Problem R1 is 4uB and the unique

corresponding schedule is one in which Satellite Sz
i has a support-time of zi, i = 1, 2, . . . , 3u.

Proof: Note that (z1, z2, . . . , z3u) is a feasible solution to Problem R1 as
∑3u

i=1 zi = uB. Moreover,

for this solution, the individual utility functions have the same slope, i.e., Π′z
i (zi) = Π′z

j(zj),

1 ≤ i, j ≤ 3u and the total utility is
∑3u

i=1(B + zi) = 4uB. It remains to be shown that the

solution (z1, z2, . . . , z3u) is optimal.

Consider an optimum solution (ẑ1, ẑ2, . . . , ẑ3u) 6= (z1, z2, . . . , z3u). Since the utility functions

are strictly increasing functions of the support-times, we may assume that
∑3u

i=1 ẑi = uB. There

exists two support times zj < ẑj and zk > ẑk. Then, we have Π′
j(ẑj) < Π′

j(zj) = Π′
k(zk) < Π′

k(ẑk),

which contradicts the fact that the marginal utilities must be equal at the optimum. Thus, the

uniqueness of the optimum solution follows from the strict concavity of the utility functions.

All the following claims prove relevant properties for the required support schedule, σ0, of

Problem Q1.

Claim 2. In schedule σ0, it is necessary for a satellite from Sg to be supported during the time

slot [i(B + 1)− 1), i(B + 1)], i = 1, 2, . . . , u.

Proof: The utility of providing one time unit of support for Satellite Sg
i (3B) is much larger

than providing the same support for Satellite Sz
i (see Figure 9). Suppose only (u− 1) satellites

from Sg are provided support of one unit time each. Then, the total utility for this scenario is
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at most 3(u − 1)B + 4uB + (B + zi). The first term is the contribution to the utility of the

(u − 1) satellites of Sg. The second term, due to Claim 1, is the maximum contribution that

can be obtained from the satellites in Sz. The third term is the upper bound on the maximum

utility for a satellite in Sz for one unit of time. Since 3(u − 1)B + 4uB + (B + zi) < 7uB, all

the satellites in Sg, i = 1, 2, . . . , u, must be supported during the entire duration that they are

available.

It follows from the above claim that satellites in Sz can only be supported in the time slots

[i(B + 1) − (B + 1), i(B + 1) − 1], i = 1, 2, . . . , u. Suppose each satellite Sz
i is supported for

an amount of time, ẑi, where ẑi ≥ 0. Since the utility function is a continuous and increasing

function of time, the constraint on the sum of support-times is ẑ1 + ẑ2 + . . . + ẑ3u−1 + ẑ3u = uB.

Claim 3. The total contribution to the utility of the Satellites Sz
i , i = 1, 2, . . . , 3u must be at

least 4uB.

Proof: Since the satellites in Sg contribute a total utility of 3uB, the utility contribution of

satellites in Sz, i = 1, 2, . . . , 3u must be at least 4uB.

Based on Claims 1 and 3, we infer that ẑi = zi, i = 1, 2, . . . , 3u, and z1+z2+. . .+z3u−1+z3u =

uB. Thus, the total utility, Πσ0 , equals 7uB.

Claim 4. There must be exactly three satellites in Sz
i , i = 1, 2, . . . , 3u, that are supported in

each time slot [i(B + 1)− (B + 1), i(B + 1)− 1], i = 1, 2, . . . , u.

Proof: From the discussion above, it follows that each satellite in Sz
i is supported for a duration

zi, and z1 + z2 + . . . + z3u−1 + z3u = uB. Thus, there is no idle-time in the required schedule

σ0. If only two satellites were served in the time slot, [i(B + 1) − (B + 1), i(B + 1) − 1], i =

1, 2, . . . , u, then there would be an idle-time in this slot as zi < B/2. Four satellites cannot

be served in any time slot [i(B + 1) − (B + 1), i(B + 1) − 1], i = 1, 2, . . . , u, since zi > B/4.

Thus, exactly three satellites whose total duration equals B are supported in each time slot

[i(B + 1)− (B + 1), i(B + 1)− 1], i = 1, 2, . . . , u . Therefore, there exists a 3-partition of A into

disjoint subsets A1, A2, . . . , Au such that, for 1 ≤ j ≤ u,
∑

zi∈Aj
zi = B and |Aj| = 3.

Appendix B: Existence of the Functions Required in the Proof

of Theorem 1

Given positive constants B and zi, i = 1, ..., 3u (specified by an arbitrary instance of 3-partition),
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the construction in Theorem 1 requires the existence of functions Πz
i : xi → <+, i = 1, ...., 3u,

that satisfy the following properties:

1. Πz
i , i = 1, ..., 3u, are differentiable, increasing functions of the support-time xi.

2. Πz
i (zi) = B + zi, i = 1, 2, . . . , 3u.

3. Π′z
i (zi) = Π′z

j(zj), 1 ≤ i, j ≤ 3u.

We show below, via a constructive proof, that there exist functions of the form Πz
i (xi) = di(1−

e−βixi) that satisfy the properties above. For this functional form, Property (3) becomes

diβie
−βizi = djβje

−βjzj , 1 ≤ i, j ≤ 3u

It is sufficient to explain the construction for two such functions, say Πz
1 and Πz

2; the construction

can be repeated to obtain the other functions Πz
i , i = 3, 4, ..., 3u.

Define d1 = B+z1

1−e−β1z1
. Let β1 > 0 be such that C = d1β1e

−β1z1 = β1e−β1z1

1−e−β1z1
(B + z1) ≤ 3. This is

possible since β1e−β1z1

1−e−β1z1
is a decreasing function of β; note that β1 = O( log(B+z1)

z1
) suffices for our

purpose. Note that Πz
1 satisfies Properties (1) and (2). The reason for bounding C from above

is the following.

claim: ziC < B + zi, i = 2, 3, ...3u.

Proof: Note that 2zi < B (refer to the proof of Theorem 1 in Appendix A). Thus, ziC ≤ 3zi <

B + zi.

It follows from the claim above that there exists β2 > 0 satisfying

Ceβ2z2 = (B + z2)β2 + C (13)

since the slope (with respect to β2) at β2 = 0 of the left-hand-side (resp., right-hand-side) of (13)

is z2C (resp., B + z2). Using

d2 =
Ceβ2z2

β2

(14)

(13) can be re-written as

d2(1− e−β2z2) = B + z2 (15)
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Thus, our preceding discussion shows the existence of β2 > 0 satisfying (15). The corresponding

value of d2 can now be obtained from (14). We thus have Πz
2 = d2(1−e−β2xi) satisfying Property 3

(with respect to Πz
1) and Properties 1, 2. The construction of the remaining functions Πz

i , i =

3, 4, ..., 3u, is similar.

Appendix C: Proofs of Theorem 2, Lemma 2, and Theorem 3

Proof of Theorem 2: As with Problem P1, 3-Partition can be reduced to the decision

problem corresponding to P2. The construction is exactly the same as in the proof of Theorem 1

with the following changes to ensure that the schedule of Figure 10 remains the unique optimum:

(1) the reconfiguration time r satisfies 0 < r < mini{B+zi

C
− zi}. Note that B+zi

C
− zi > 0, i =

1, 2, ..., 3u (refer to Appendix B), (2) the planning horizon, L = u(B + 1) + 4ur, (3) the time-

window of Satellite Sg
i , i = 1, 2, . . . , u, is [ag

i , b
g
i ] = [i(B + 4r + 1)− r − 1, i(B + 4r + 1)] and the

time-window of Satellite Sz
i , i = 1, 2, . . . , 3u, is [az

i , b
z
i ] = [0, L], and (4) the planning horizon L′

for Problem R1 is L′ = uB + 3ur.

Proof of Lemma 2: Without loss of generality, consider the situation illustrated in Figure 11:

The time window for Satellite Sj starts at time qk; satellites Si and Sj are concurrently visible

during the interval tk+1. Let ci and cj be the associated linear coefficients of the utility functions

for satellites Si and Sj, respectively. Suppose in an optimum solution ρ, the switching of support

from Satellite Si to Satellite Sj takes place at a, 0 < a < qk+1−qk, units after Satellite Sj becomes

visible at time qk (see Figure 11).

Si

Sj

tk tk+1

ci

cj

qk-1 qk qk+1

tk+2

a

Figure 11: Satellite Switching Illustrating Lemma 2

Case 1: ci = cj. In this case, the total utility obtained by switching at time qk− r or at the end

of interval tk (i.e., at time qk) or at time qk+1− r or at the end of interval tk+1 (i.e., at time qk+1)
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is same as the total utility obtained by switching at time qk + a. Hence, we obtain an alternate

optimum solution ρ′ by switching at time qk − r, qk, qk+1 − r or qk+1 rather than at time qk + a.

Case 2: ci < cj. If the switching took place at time qk − r, the total utility would be [(cj −
ci)(a+r)] > 0 units larger than the solution given by ρ. Thus, ρ cannot be an optimum solution.

Case 3: ci > cj. If the switching took place at the end of the interval tk+1 (i.e., at time qk+1),

the total utility would be larger than that of ρ by [(ci− cj)(qk+1− qk − a)] > 0 units. This, thus,

contradicts the optimality of ρ.

Proof of Theorem 3: First, by Lemma 2, it is sufficient to optimize over the set of schedules

represented in G. Suppose a longest path in G visits Satellite Si during some interval tk, then

visits Satellite Sj during intervals tk+1 through tl−1, and then revisits Si again during interval

tl. Since the support switched from Si to Sj in interval tk+1, the utility (per unit time) offered

by Satellite Sj is strictly higher than that of Satellite Si (recall our assumption that ci 6= cj, i 6=
j, 1 ≤ i, j ≤ m). Also, since [ai, bi] 6⊆ [aj, bj], i 6= j, 1 ≤ i, j ≤ m, Satellite Sj must be available

either during interval tk, or interval tl, or both; replacing the support of Si by Sj in such an

interval provides a strictly higher profit, thereby contradicting the optimality of the path. The

proof is similar for the more general case where the longest path visits an arbitrary subset of

satellites before revisiting Si.

Appendix D: Proofs of Lemma 3 and Theorem 5

Proof of Lemma 3: Recall that M = {S1, S2, ..., Sm}. Initially, the set Ω is empty. We now

show that at least one new satellite is added to Ω in Step 3 during each iteration. Suppose none

of the satellites in Γ is included in Ω in Step 3 of an iteration. For simplicity of exposition, we

assume Γ = {Sk}. As before, let µk be the set of satellites serviced during the time-window

[ak, bk] of Sk, and let the optimum value of the LP in Step 1 be y. Note that y = yk as Sk ∈ Γ,

where yk is the log-slope of Sk at the corresponding support-time xk. Since Sk is not included in

Ω at Step 3, there exists Si ∈ µk, i 6= k, whose log-slope (at its corresponding support-time xi)

is yi < y.

Consider the following perturbation of the current solution in the time-window [ak, bk]: for

an infinitesimally small θ > 0, we decrease (resp. increase) the support of Si (resp. Sk) in
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[ak, bk] by θ. The resulting feasible solution has an objective function value smaller than y, thus

contradicting the optimality of y. The proof for |Γ| > 1 is similar. Since |M | = m, the result

follows.

Proof of Theorem 5: As shown in Lemma 4, Algorithm OptP3 provides a solution in polynomial-

time. We now show that this solution is, in fact, optimum. Let the objective function values

obtained at `th iteration of Step 1 be y`∗. From Lemma 5, we have y1∗ ≥ y2∗ ≥ . . . ≥ yu∗, u ≤ m.

Let the corresponding satellite support-times be x∗j , j = 1, 2, ..., m. Without loss of generality, we

assume that the log-slopes (y∗j ) corresponding to the support-times x∗j are in non-increasing or-

der: y∗1 ≥ y∗2 ≥ . . . ≥ y∗m. Note that if support-time x∗j of Satellite Sj is determined by Algorithm

OptP3 at the end of `th iteration of Steps 1 and 3, then j ≥ ` and y∗j = y`∗.

Consider an optimum vector, xo = (xo
1, x

o
2, . . . , x

o
m), of the support-times. We will show that

xo = x∗ ≡ (x∗1, x
∗
2, . . . , x

∗
m). It is important to note that this does not imply the uniqueness

of the optimum solution: the support-time x∗j is the aggregate support-time for Satellite Sj.

Showing xo = x∗ proves that the aggregate support-times for the satellites are the same in any

optimum solution. There can, however, be multiple schedules that generate the same aggregate

support-times for all the satellites.

To proceed with our proof, let yo
j denote the log-slopes corresponding to the support-times

xo
j , i = 1, 2, ..., m. Let Sp be the first satellite for which xo

p 6= x∗p; thus xo
r = x∗r, r = 1, 2, . . . , p− 1.

We consider two cases: xo
p < x∗p and xo

p > x∗p.

• Case 1: xo
p < x∗p. Then, yo

p > y∗p. Let ε > 0, and xo
p = x∗p − ε. From Lemmas 6 and 7, we

have xo
1 + xo

2 + . . . + xo
m = x∗1 + x∗2 + . . . + x∗m = L. Let q ≥ p + 1 be the smallest index

such that xo
q = x∗q + δ, δ > 0. Clearly, y∗p ≥ y∗q . Let 0 < θ ≤ min{ε, δ}. Since xo

p < x∗p

and xo
q > x∗q, we have yo

p > y∗p and y∗q > yo
q . Thus, yo

p > y∗p ≥ y∗q > yo
q . Keeping all other

variables fixed, consider the solution obtained by increasing (resp. decreasing) xo
p (resp.

xo
q) by θ. That is, consider the feasible solution vector

(xo
1, . . . x

o
p−1, x

o
p + θ, xo

p+1, . . . , x
o
q−1, x

o
q − θ, xo

q+1, . . . , x
o
m)

Since yo
p > yo

q , the increase in utility corresponding to an increase of θ in the support-

time of Sp is larger than the decrease in utility corresponding to the decrease of θ in the
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support-time of Sq. This contradicts the optimality of xo.

• Case 2: xo
p > x∗p. This implies that yo

p < y∗p. Let ε > 0 and xo
p = x∗p + ε. As before, let

q ≥ p + 1 be the smallest index with xo
q = x∗q − δ, δ > 0. Let 0 < θ ≤ min{ε, δ}. We

consider two subcases:

– Case 2a: y∗p > y∗q . Assume that the support-times of satellites S1, S2, . . . , Sk, k ≥ j,

are fixed until the end of iteration `. We, therefore, have xo
r = x∗r, r = 1, 2, . . . , p− 1,

xo
p > x∗p , xo

r ≥ x∗r, r = p + 1, . . . , k, . . . , q − 1, and xo
q < x∗q. The solution to the LP,

corresponding to the first k satellites, in iteration ` is (x∗1, x
∗
2, . . . , x

∗
p, . . . , x

∗
k). However,

since yo
p < y∗p, the vector (xo

1, x
o
2, . . . , x

o
p, . . . , x

o
k) is a better solution (in iteration `).

We, therefore, have a contradiction.

– Case 2b: y∗p = y∗q . An argument similar to that in Case 1 shows that yo
p < y∗p = y∗q <

yo
q . As in Case 1, consider the feasible solution vector

(xo
1, . . . x

o
p−1, x

o
p − θ, xo

p+1, . . . , x
o
q−1, x

o
q + θ, xo

q+1, . . . , x
o
m)

As yo
p < yo

q , the increase in utility corresponding to an increase of θ in the support-time

of Sq is larger than the decrease in utility corresponding to the decrease of θ in the

support-time of Sp. This contradicts the optimality of xo.

Since the choice of p was arbitrary, we have that xo
j = x∗j , j = 1, 2, . . .m. The result follows.

Appendix E: Proof of Theorem 7

Proof of Theorem 7: Consider an arbitrary instance of Even-Odd Partition (EOP) (Garey

and Johnson, 1979).

Even-Odd Partition: Given a set A = {z1, z2, . . . , z2u−1, z2u} and zi ∈ Z+ for each i =

1, 2, . . . , 2u, where z1 < z2 < . . . < z2u−1 < z2u and
∑

zi∈A zi = 2B, does there exist a partition of

A into subsets A1 and A2 such that
∑

zk∈A1
zk =

∑
zk∈A2

zk = B, and that each of A1, A2 contains

exactly one of z2i−1, z2i for i = 1, 2, . . . , u?

Given an instance of Even-Odd Partition (EOP), we can construct a specific instance of

the decision problem for Problem P4 as follows (see Figure 12).
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Planning Horizon
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2S

1S
3S

4S

5S

6S

7S

8S

32 −uS

22 −uS

12 −uS

uS2

Figure 12: An Instance of the Decision Problem Q4

• Consider a set of 2u satellites M = {Si|1 ≤ i ≤ 2u}.

• There is a positive reconfiguration time (r) of duration 2B.

• The upper bound of the planning horizon, L, equals (u− 1)r + B.

• The time-window, [ai, bi], of Si, i = 1, 2, . . . , 2u, is defined as follows: [a1, b1] = [a2, b2] =

[0, z2]; [a2j−1, b2j−1] = [a2j, b2j] = [(j − 2)r + z2 + . . . + z2j−2, (j − 1)r + z2 + . . . + z2j], j =

2, 3, . . . , u− 1; [a2u−1, b2u−1] = [a2u, b2u] = [(u− 2)r + z2 + . . . + z2u−2, (u− 1)r + B].

• The properties of the utility functions Πi(xi), i = 1, 2, ..., 2u, are similar to those of the

functions Πz
i in the proof of Theorem 1 in Appendix A (see Figure 9), and are as defined

below.

1. Πi(xi), i = 1, 2, . . . , 2u, are differentiable and strictly concave.

2. Πi(zi) = K + zi, i = 1, 2, . . . , 2u, where K > 0.

3. Π′
i(zi) = Π′

j(zj), 1 ≤ i, j ≤ 2u, where Π′z
i (zi) is the value of the derivative of the

utility function of Satellite Si at the support-time zi. Without loss of generality, we

assume that this common slope is 1. That is, Π′
i(zi) = 1, 1 ≤ i ≤ 2u.

The proof of the existence of functions that obey the above properties is similar to that of

Theorem 1 (see Appendices A and B).
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For this specific instance of Problem P4, consider the following decision problem (see Fig-

ure 12).

Decision Problem (Q4): Does there exist a schedule σ of support-times such that the total

utility over the planning horizon [0, L] is at least uK + B?

The decision problem Q4 is clearly in class NP. Also, it is easy to verify that the construction

of Q4 can be done in polynomial-time. We now show that there is a schedule σ of support-times

such that Πσ ≥ uK + B if and only if there exists a solution to Problem EOP.

Planning Horizon

0

z2 r+z2+z4 2r+z2+z4+z6 (u-2)r+z2+z4+…+z2u-2

(u-1)r+B

z1 r z4 r z5 r z2u-1r

0 L

2S

5S
3S

4S

1S

6S

7S

8S

32 −uS

22 −uS

12 −uS

uS2

Figure 13: Proposed Schedule σ

If part: If there exists an EOP, we prove that there is a support schedule σ with a total utility

Πσ = uK + B. Assume
∑

zk∈A1
zk =

∑
zk∈A2

zk = B. Note that M = {S1, S2, . . . , S2u}. The

time-windows of the satellites S2j−1 and S2j, j = 1, 2, . . . , u, are the same. There are u such

disjoint intervals. The proposed schedule σ is illustrated in Figure 13. Exactly one satellite S2j−1

(or S2j), j = 1, 2, . . . , u, is scheduled for the duration of z2j−1 (or z2j) at each disjoint interval tj,

j = 1, 2, . . . , u, where t1 = [0, z2], tj = [(j−2)r+
∑j−1

r=1 z2r, (j−1)r+
∑j

r=1 z2r], j = 2, 3, . . . , u−1,

and tu = [(u − 2)r +
∑u−1

r=1 z2r, (u − 1)r + B]. Since there are (u − 1) reconfigurations and

L = (u−1)r+B, the total support-time cannot be more than B, which is indeed
∑

zk∈A1
zk = B.

Recall also that the utility of the satellite S2j−1 (or S2j) for the support-time z2j−1 (or z2j) is

Π2j−1(z2j−1) = K + z2j−1 (or Π2j(z2j) = K + z2j). Thus, the total utility (Πσ) equals uK + B.

Note that the first satellite can be reconfigured before time zero, which is ignored here.
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Only if part: If there exists a support schedule σ0 with Πσ0 ≥ uK + B, we show that there is an

EOP through a series of claims. Since the value of r is large, there is no advantage to preempt

and resume the support for any of the satellites in schedule σ0.

Claim 1. There cannot be more than (u−1) reconfigurations during the planning horizon [0, L].

Proof: Since ur = 2uB, ur > L = (u− 1)r + B = 2uB −B. The result follows.

Claim 2. At most one of the two satellites S2j−1 and S2j is supported at each disjoint interval

tj, j = 1, 2, . . . , u.

Proof: Note that the duration of each interval cannot be more than r + B = 3B. Since

2r = 4B > 3B, at each interval j, j = 1, 2, . . . , u, there cannot be two reconfigurations to serve

two satellites. Thus, at most one of the two satellites (i.e., S2j−1 or S2j) can be supported at

each interval j = 1, 2, . . . , u.

Due to the above claims, at most u satellites can be scheduled. More precisely, at each

interval tj, at most one satellite Ŝj, where Ŝj ∈ {S2j−1, S2j}, with support-time ẑj ≥ 0 can be

engaged. Moreover, due to the durations of the intervals, the following constraints must also be

satisfied:

ẑ1 ≤ z2

ẑ1 + ẑ2 ≤ z2 + z4

ẑ1 + ẑ2 + . . . + ẑj ≤ z2 + z4 + . . . + z2j, j = 3, 4, . . . , u− 1.

ẑ1 + ẑ2 + . . . + ẑu−1 + ẑu ≤ B

Recall that the utility function is continuous and an increasing function of the support-time.

Thus, in order to maximize the total utility, the sum of the support-times ẑ1 + ẑ2 + . . .+ ẑu−1 + ẑu

must be equal to B, where each ẑj is strictly positive. Now, we consider the following problem.

Problem R4: The same set of satellites M = {S1, S2, . . . , S2u} is visible as in Problem Q4. The

functional form of the nonlinear utility function is also same as before. Let r = 0 and each

satellite be visible throughout the entire planning horizon [0, L′], with L′ = B. Find an optimum

non-preemptive solution that maximizes the utility subject to the constraint that exactly u

satellites – one satellite S̄j from each set, {S2j−1, S2j}, j = 1, 2, . . . , u – are supported.

Claim 3. If the the optimum solution value (i.e., the maximum utility) of Problem R4 is at least

13



uK+B, then the support-time for S̄j, j = 1, 2, . . . , u is z̄j ∈ {z2j−1, z2j}, with z̄1+z̄2+. . .+z̄u = B.

Proof: Consider an optimum vector of support-times zo = (zo
1, . . . , z

o
u) 6= z̄ = (z̄1, . . . , z̄u). Recall

that the common slope s̄ of all the u satellites at the support-times corresponding to z̄ is equal to

one. Furthermore, it follows from Lemma 1 and Remark 1 that (i) the slope of all the u satellites

at the support-times corresponding to zo is equal, say so, and (ii) zo
1 + . . . + zo

u = B. Consider

the following three cases:

(a) so < s̄ = 1. Then, zo
j > z̄j, j = 1, 2, . . . , u. The total utility corresponding to support-times

zo, Π(zo) can be expressed as follows: Π(zo) = Π(z̄)+∆1, where ∆1 =
∑u

j=1[Πj(z
o
j )−Πj(z̄j)]

and Π(z̄) = uK +
∑u

j=1 z̄j. Since s̄ = 1, we have Πj(z
o
j )−Πj(z̄j) < zo

j − z̄j, j = 1, 2, . . . , u.

Thus, we have

Π(zo) = Π(z̄) + ∆1 < uK +
u∑

j=1

z̄j + (
u∑

j=1

zo
j −

u∑

j=1

z̄j) = uK + B

This contradicts the assumption that zo is an optimum solution with total utility at least

uK + B.

(b) so > s̄ = 1. In this case, zo
j < z̄j, j = 1, 2, . . . , u. The total utility corresponding to support-

times zo, Π(zo) can be expressed as follows: Π(zo) = Π(z̄)−∆2, where ∆2 =
∑u

j=1[Πj(z̄j)−
Πj(z

o
j )] and Π(z̄) = uK +

∑u
j=1 z̄j. Since s̄ = 1, we have Πj(z̄j) − Πj(z

o
j ) > z̄j − zo

j ,

j = 1, 2, . . . , u. Thus,

Π(zo) = Π(z̄)−∆2 < uK +
u∑

j=1

z̄j − (
u∑

j=1

z̄j −
u∑

j=1

zo
j ) = uK + B

This, again, contradicts the assumption that the total utility corresponding to zo is at least

uK + B.

(c) so = s̄ = 1. The contradictions obtained for the previous two cases imply that this case

is the only possibility. It follows that zo
j = z̄j, j = 1, 2, . . . , u. Then, the utility equals

∑u
j=1 K + z̄j = uK + B. Thus,

∑u
j=1 z̄j = B.

Claim 4. If Πσ0 ≥ uK+B, then ẑj, j = 1, 2, . . . , u, corresponds to an EOP, i.e., ẑj ∈ {z2j−1, z2j},
j = 1, 2, . . . , u.

Proof: Follows immediately from Claims 1-3.
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