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Abstract

We study the problem of combined pricing, resource allocation, and overbooking
by service providers involved in dynamic non-cooperative oligopolistic competition on
a network that represents the relationships of the providers to one another and to
their customers when service demand is uncertain. We propose, analyze and compute
solutions for a model that is more general than other models reported in the revenue
management (RM) literature to date. In particular previous models typically consider
only three or four of �ve key RM features that we have purposely built into our model:
(1) pricing, (2) resource allocation, (3) dynamic competition, (4) an explicit network,
and (5) uncertain demand. Illustrative realizations of the abstract problem we study
are those of airline revenue management and service provision by companies facing
resource constraints. Under fairly general regularity conditions, we prove existence
and uniqueness of a pure-strategy Nash equilibrium for dynamic oligopolistic service
network competition described by our model. We also show, again for an appropriate
notion of regularity, that competition leads to the under-pricing of network services.
We are able to numerically quantify the under-pricing gap for an illustrative example
problem of intermediate size. Our proposed algorithm is shown to be implementable
using well-known o¤-the-shelf commercial software.

Keywords : dynamic games, variational inequalities, revenue management, pricing
and allocation, overbooking
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APPENDIX : Proofs

Proof of Lemma 1. Note that the expected refunds and overbooking costs are separable
in resource type. Taking the partial derivative of OBCf with respect to x

f
j;N we obtain
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and using the fact that z is normally distributed, one obtains after some simpli�cation the
following:
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as required. �

Proof of Proposition 1. Since Df
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using the identity dF (z) = f(z)dz
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integrating by parts the third term of the right hand side we obtain
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Hence the proof. �

Proof of Lemma 2. To show Hf;t is strictly concave in u
f
t ; we need to establish
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which completes the proof. �

Proof of Lemma 3. Part (a) : In Lemma 1 we have already established
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Di¤erentiating xfj;N w.r.t. �fl using the expression (same as the eqn (4) of the main paper)
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The last inequality is obtained as the pdf f (�) � 0, aij is either 0 or 1. This concludes the
�rst part of the proof.

Part (b) : Di¤erentiating xfj;N w.r.t. pfi;t using (2)
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�
1 +

ATi ��
f

pfi;t

�
= y

which implies F (y) = 1 + ATi ��
f

pfi;t
; and

dy

dpfi;t
= � 1

f(y)

ATi � �f�
pfi;t

�2 � 0
as �f � 0. Rewriting (3), we obtain

@xfj;N

@pfi;t
= aij

dfi;t

pfi;t

�
�efi;t � y +

[1� F (y)]
f(y)

�
(4)

Using the de�nition of generalized failure rate � (y) = yf(y)
1�F (y) , (4) can be further simpli�ed
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From Lemma 1 we have @OBCj
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Hence the proof. �

Proof of Lemma 4. We observe that the Hamiltonian is separable, i.e., Hf;t =
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where efi;t is the local price elasticity. Next, we observe
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Proof of Lemma 5. We have seen in Lemma 4 that for a given �f (thus cf ) the game
is supermodular. In addition, if we are able to show that Hf;t has increasing di¤erences in�
pft ; c

f
�
for each p�ft ; we can use Theorem 6 to establish that the extremal equilibria of the

revenue optimization game are increasing functions of rhe shadow price of resources, �f .
Di¤erentiating Hf;t by c

f
j we obtain

@Hf;t

@cfi
= �dfi;t � F

�1

 
1� cfi

pfi;t

!
(9)

Di¤erentiating again (9) w.r.t. service prices we observe @2Hf;t

.
@cfi @p

f
j;t = 0 if j 6= i and

@2Hf;t

@cfi @p
f
i;t

= �
@dfi;t

@pfi;t
� F�1

 
1� cfi

pfi;t

!
�

dfi;t

f

�
F�1

�
1� cfi

pfi;t

�� � cfi�
pfi;t

�2

=
dfi;t

pfi;t

2664efi;t � F�1
 
1� cfi

pfi;t

!
� 1

f

�
F�1

�
1� cfi

pfi;t

�� � cfi
pfi;t

3775 (10)

Let F�1
�
1� cfi

pfi;t

�
= y which implies cfi

pfi;t
= 1� F (y); and

dy

dpfi;t
= +

1

f(y)

cfi�
pfi;t

�2 � 0
as cfi = �

�
�f
�T Ai � 0: Rewriting (10) we obtain

@2Hf;t

@cfi @p
f
i;t

=
dfi;t

pfi;t

�
efi;t � y �

1� F (y)
f (y)

�

=
dfi;t

pfk;t
y

�
efi;t �

1

� (y)

�

Now, we know y � 0; efi;t is increasing in p
f
i;t (item 5 of assumption A2) and

1
�(y) is strictly de-

creasing in pfi;t from (5). Further, since from the condition e
f
i;t

����pfi;t=pf;min � 1

�

 
F�1

 
1+

AT
i
��f

p
f
i;min

!!

we know @2Hf;t

@cfi @p
f
i;t

����
pfi;t=p

f
i;min

� 0 and more over

@2Hf;t

@cfi @p
f
i;t

� 0 for all pfi;min � pfi;t � pfi;max and c
f
i � 0

6



Therefore, condition (ii) of Theorem 1 (Theorem 7; Amir 2003) is satis�ed as well, hence
the extremal equilibria of the game are increasing functions of cf :�

Proof of Lemma 6. Since the Hamiltonian is separable and from (6)
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here once again we have utilized the identity. Since �0(y) > 0 from IGFR assumption,
�0 (y) < 0 for all y > 0 which completes the proof. �

Proof of Theorem 2. It is relatively straightforward to show that a policy p� that solves
the variational inequality problem: �nd pf�i;t 2 �f such thath
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(same as eqn (25) of the paper). We will now show the converse, i.e., the solution to joint
variational inequality problem (14) solves variational inequality problems (13) for each �rm
f simultaneously. That is, if p� is a solution to joint VI problem (14), then for each �rm f
2 F , pf� solves the variational inequality problem (13) with competitors�policies p�f given
by p�f�. Own shadow price is computed by solving the equation
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where it is essential to recognize that G (p) is a linear functional that assumes knowledge of
the solution of (14); as such G (p) is a mathematical construct for use in analysis and has no
meaning as a computational device. The corresponding necessary and su¢ cient conditions
for this mathematical program are identical to (13) for all f 2 F as because
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Proof of Theorem 3. We need to establish that there exists at least one solution of the
VI (14). Since any solution of (14) is a Nash equilibrium of the game (per Theorem 2),
then that solution will also be a Nash equilibrium of the game. Note that the strategy
space of each �rms�pricing decision for each service is a closed interval, hence p is a non-
empty, compact and convex set of RjFj�jSj�(N�1). Further,

�
rp1H1 � � � rpjFjHjFj

�T
is a continuous mapping from K into RjFj�jSj�(N�1). Therefore, invoking Theorem 3.1 of
Harker and Pang (1990) we establish that there exists a solution of (14), hence the proof.
�
Proof of Theorem 4. To establish the claim, we should be able to establish
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Case (a) : When pf�i;t = pfi;min; since cooperative equilibrium has also the same bounds

on service prices, ~pfi;t � pfi;min(= pf�i;t )

Case (b) : On the other hand, when pf�i;t > pfi;min we need to establish (18). From (??)
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To establish (19), we once again consider 2 cases : (c) ~pfi;t = pfi;max and (d) ~p
f
i;t < pfi;max:

Case (c) : When ~pfi;t = pfi;max; by de�nition the non-coobperative equilibrium cannot be

greater than ~pfi;t:
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Case (d) : We need to establish (19) when ~pfi;t < pfi;max. At this cooperative equilibrium
point

@ ~Hc
t

�
~pt; ~�; t

�
@pfi;t

� 0

In particular, if ~pfi;t is a strictly interior point, the partial will be equal to 0 and strictly

positive if ~pfi;t = pfi;min. Using (??)
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From (20) we know every term inside the summation are non-negative; thus
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�
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~�
f
; ~p�ft ; t

�
@pfi;t

� 0

Therefore, (18) says that at the non-cooperative Nash equilibrium point, the joint pro�t can
be further increased if all �rms can collude. But no �rm will take such strategy unilaterally
because it has already made the best response given other �rms�pricing decisions. Further,
(19) says that if �rms adopt cooperative strategies while they are actually involved in non-
cooperative equilibrium, they have an incentive to decrease prices to attract more demand.
Thus cooperative strategy is clearly not their best response strategy and is not a Nash
equilibrium. �
Proof of Theorem 5. The �xed point problem considered requires that

p = argmin
q

�
1

2
kp� � � F (p; �; t)� qk2 : q 2 K

�
(21)

where � 2 <1++. That is, we seek the solution of the following mathematical program

min
q
J(q) =

1

2
[p� � � F (p; �; t)� q]2

subject to
q 2 K

Let us take q� 2 K be a minimum of the above �nite dimensional mathematical program
and recall that K is convex. Since J(q) is convex and di¤erentiable at q� 2 K, a necessary
and su¢ cient condition is

hrJ (q�) ; q � q�i � 0 for all q 2 K (22)

further
rJ (q�) = (�1) [p� � � F (p; �; t)� q�] (23)

10



By virtue of (21) p = q�, so (23) may be restated as

rJ (q�) = � � F (q�; ��; t)

where �� is obtained by solving the equation

�fj = �
@OBCf

@xfj;N
for all j 2 C

(which is same as eqn (16) of the paper) for given q�. Taken together, (22) and (23) give

�hF (q�; ��; t) ; q � q�i � 0 for all q 2 K (24)

Because � is positive and constant and F (p�; ��; t) =
�
�rpfHf

�
pf�;��; p�f�

� �
f2F , (24)

reduces to X
f2F

h
rqfHf

�
qf�;��; q�f�

�iT
�
�
qf � qf�

�
� 0 for all q 2 K

(14) follows immediately, and the theorem is proved. �

Proof of Theorem 6. We need to study the negative of the Jacobian matrix. If we can
establish that at the point p�� where�

rpf�Hf

�
pf;��;��; p�f;��

��
f2F

= 0 (25)

(the above eqn is same as eqn (44) of the paper) holds the diagonal terms of the negative
Jacobian matrix are strictly positive, o¤-diagonal terms are nonnegative and the matrix is
strictly diagonally dominant, it will follow automatically that the negative Jacobian matrix
has all principal minors positive. Hence (25) has an unique solution. We know

� @2Hf;t

@pfi;t@p
f
j;t

= 0 for all i 6= j; f 2 F and t 2 [0; N � 1]

� @2Hf;t

@pfi;t@p
g
j;t

= 0 for all i 6= j; f 6= g and t 2 [0; N � 1]

� @2Hf;t

@pfi;t@p
g
i;t

=
Hf;t

pfi;f
�
@efi;t
@pgi;t

� 1

pfi;t

@dfi;t
@pgi;t

264��efi;t + 1�� ATi � �f

pfi
�

F�1
�
�fi;t

�
R F�1��fi;t�
0 �f (�) d�

375(26)
� 0 for all i 2 S; f 6= g and t 2 [0; N � 1]

The last inequality is obtained because at p��, @Hf;t
@pfi;t

= 0 (therefore terms inside the bracket

of (26) vanish). Further, by Lemma 8 we know

@2Hf;t

@
�
pfi;t

�2
������ @Hf;t@p

f
i;t

=0
< 0

11



Therefore the diagonal terms

� @2Hf;t

@
�
pfi;t

�2
������ @Hf;t@p

f
i;t

=0
> 0

Now, we need to show that

@2Hf;t

@
�
pfi;t

�2 + X
i;j2S

X
f;g2F

@2Hf;t

@pfi;t@p
g
j;t

< 0 for all i 2 S; f 2 F

i.e., to show
@2Hf;t

@
�
pfi;t

�2 +X
f;g

@2Hf;t

@pfi;t@p
g
i;t

< 0 for all i 2 S; f 2 F

Now,

@2Hf;t

@
�
pfi;t

�2 =
1

pfi;t

@Hf;t

@pfi;t
�

264��efi;t + 1�� ATi � �f

pfi
�

F�1
�
�fi;t

�
R F�1��fi;t�
0 �f (�) d�

375
+
H i
f;t

pfi;t
�

264�@efi;t
@pfi;t

+
ATi � �f�
pfi;t

�2 � F�1
�
�fi;t

�
R F�1��fi;t�
0 �f (�) d�

375

+
H i
f;t

pfi;t
�

2666664
�
ATi � �f

�2�
pfi

�3 �

R F�1��fi;t�
0 �f (�) d� 1

f
�
F�1

�
�fi;t

�� + �F�1 ��fi;t��2 R F�1��fi;t�
0 �f (�) d�

!2
3777775(27)

=
H i
f;t

pfi;t
�

264�@efi;t
@pfi;t

+
ATi � �f�
pfi;t

�2 � F�1
�
�fi;t

�
R F�1��fi;t�
0 �f (�) d�

375

+
H i
f;t

pfi;t
�

2666664
�
ATi � �f

�2�
pfi

�3 �

R F�1��fi;t�
0 �f (�) d� 1

f
�
F�1

�
�fi;t

�� + �F�1 ��fi;t��2 R F�1��fi;t�
0 �f (�) d�

!2
3777775

The �rst term in (27) vanishes because

@Hf;t

@pfi;t

���pf;��i;t
= 0
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So,

@2Hf;t

@
�
pfi;t

�2 +X
f;g

@2Hf;t

@pfi;t@p
g
i;t

= �
H i
f;t

pfi;t

24@efi;t
@pfi;t

+
X
g 6=f

@efi;t
@pgi;t

35+ H i
f;t

pfi;t
�

26664
ATi ��

f�
pfi;t

�2 �
F�1

�
�fi;t

�
R F�1(�fi;t)
0 �f(�)d�

37775

+
H i
f;t

pfi;t
�

26666664

(ATi ��
f)

2�
pfi

�3 �

R F�1(�fi;t)
0 �f(�)d� 1

f(F�1(�fi;t))
+
�
F�1

�
�fi;t

��2
 R F�1(�fi;t)

0 �f(�)d�

!2

37777775
The terms in the �rst bracket on the right hand side are non-positive from item 8 of
assumption A2. The remaining group of terms has been shown to be negative in the
proof of Lemma 6 (in particular please refer to (11)) after a change of variable F (y) =

1 +

�
1 +

ATi ��
f

pf;ki;l

�
. Hence

� @2Hf;t

@
�
pfi;t

�2 �X
f;g

@2Hf;t

@pfi;t@p
g
i;t

> 0

Therefore, (25) has only one solution. From here we conclude that the VI : �nd p�� 2 ~K
such that X

f2F

h
rpfHf

�
pf;��;��; p�f;��

�iT
�
�
pf � pf;��

�
� 0 (28)

for all p 2 ~K

where
~K =

Y
f2F

n
pf : pfmin � pf � pfmax

o
(which is same as eqn (43) of the paper) also has one solution which can be expressed as

pf;��i;t = max
�
pfi;min;min

�
pf;�i;t ; p

f
i;max

��
where pf;�i;t is an element of the unique vector that solves (25). Hence the proof. �

References

Harker, P. T., and J.-S. Pang (1990), "Finite-dimensional Variational Inequality and Non-
linear Complementarity Problems : A Survey of Theory, Algorithms and Applica-
tions", Mathematical Programming Series B, Vol. 48, pp. 161-220.

13


