## Appendix 1

Claim: $\Pi$ is strictly and jointly concave in $q_{1}, q_{2}, q_{3}$.
Proof: In order to show that $\Pi$ is strictly and jointly concave in $q_{1}, q_{2}, q_{3}$, it is necessary to show that the determinants of the hessian (defined below) alternate in sign. Now given that:

$$
\begin{aligned}
\Pi= & q_{1}\left(d_{1}-q_{1}-r_{13} q_{3}\right)+q_{2}\left(d_{2}-q_{2}-r_{23} q_{3}\right)+ \\
& +q_{3}\left(d_{3}-q_{3}-r_{13} q_{1}-r_{23} q_{2}\right)
\end{aligned}
$$

the hessian and its determinants are:

$$
\begin{aligned}
& H=\left[\begin{array}{ccc}
\frac{\partial^{2} \Pi}{\partial \eta_{1}^{2}} & \frac{\partial^{2} \Pi}{\partial q_{1} \partial q_{2}} & \frac{\partial^{2} \Pi}{\partial q_{1} \partial q_{3}} \\
\frac{\partial^{2} \Pi}{\partial q_{2} \partial q_{1}} & \frac{\partial^{\Pi} \Pi}{\partial \Pi_{2}^{2}} & \frac{\partial^{\Pi} \Pi}{\partial q_{2} \partial q_{3}} \\
\frac{\partial^{2} \Pi}{\partial q_{3} \partial q_{1}} & \frac{\partial^{2} \Pi}{\partial q_{3} \partial q_{2}} & \frac{\partial^{2} \Pi}{\partial q_{3}^{2}}
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & -2 r_{13} \\
0 & -2 & -2 r_{23} \\
-2 r_{13} & -2 r_{23} & -2
\end{array}\right] \\
& \left|H_{1}^{1}\right|=\left|H_{2}^{1}\right|=\left|H_{3}^{1}\right|=-2<0 \\
& \left|H_{12}^{2}\right|=4>0,\left|H_{13}^{2}\right|=4\left(1-r_{13}^{2}\right)>0,\left|H_{23}^{2}\right|=4\left(1-r_{23}^{2}\right)>0 \\
& \left|H_{123}^{3}\right|=-8\left(1-r_{13}^{2}-r_{23}^{2}\right)<0 \text { by assumption. }
\end{aligned}
$$

Since the determinants of the hessian alternate in sign, we conclude that $\Pi$ is strictly and jointly concave in $q_{1}, q_{2}, q_{3}$.

## Appendix 2

Theorem 1: The optimal product portfolio strategy for the firm can be identified as follows.

1. If $d_{3} \in\left(0, \tau_{1}\right]$, the optimal product portfolio strategy is NMFPS;
2. If $d_{3} \in\left(\tau_{1}, \tau_{2}\right]$, the optimal strategy is APS.
3. If $d_{3} \in\left(\tau_{2}, \tau_{3}\right)$, and

- If $\frac{d_{2}}{r_{23}} \leq \frac{d_{1}}{r_{13}}$, then the optimal strategy is PMFPS1; and
- If $\frac{d_{2}}{r_{23}}>\frac{d_{1}}{r_{13}}$, then the optimal strategy is PMFPS2.

4. If $d_{3} \in\left[\tau_{3}, \infty\right)$, then the optimal strategy is SMFPS.
where:

$$
\begin{aligned}
\tau_{1} & =r_{13} d_{1}+r_{23} d_{2} \\
\tau_{2} & =\min \left\{\left(\frac{1-r_{23}^{2}}{r_{13}}\right) d_{1}+r_{23} d_{2}, r_{13} d_{1}+\left(\frac{1-r_{13}^{2}}{r_{23}}\right) d_{2}\right\} \\
\tau_{3} & =\max \left\{\left(\frac{1}{r_{13}}\right) d_{1},\left(\frac{1}{r_{23}}\right) d_{2}\right\}
\end{aligned}
$$

Proof: Given the strict concavity of $\Pi$ (see Appendix 1), it is necessary and sufficient to set the FOC equal to 0 to determine the optimal quantities of each product (i.e., $q_{i}^{*}$ for $i=1,2,3$ ) which should be offered by the firm. In addition, the results shown in Table 2 and the definitions of $\tau_{1}$ and $\tau_{2}$ above provide us with the following guidelines for when each strategy is feasible:

- $0<d_{3}<\infty \Rightarrow$ NMFPS and SMFPS are both feasible.
- $\tau_{1} \leq d_{3} \leq \tau_{2} \Rightarrow \mathrm{APS}$ is feasible.
- $r_{13} d_{1}<d_{3}<r_{13}^{-1} d_{1} \Rightarrow$ PMFPS1 is feasible.
- $r_{23} d_{2}<d_{3}<r_{23}^{-1} d_{2} \Rightarrow$ PMFPS2 is feasible.

The remainder of this proof is provided depending upon the range of values for the parameter $d_{3}$ in the Theorem.

Case 1: $d_{3} \in\left(0, \tau_{1}\right]$
To start with, it is obvious that since $r_{13} d_{1}+r_{23} d_{2}>r_{13} d_{1}$ and $r_{13} d_{1}+r_{23} d_{2}>r_{23} d_{2}$, in the range $0<d_{3}<r_{13} d_{1}+r_{23} d_{2}$, the potentially feasible strategies are NMFPS, SMFPS, PMFPS1, and PMFPS2. Keeping in mind our assumption of $r_{13}^{2}+r_{13}^{2}<1$ which implies that $1-r_{13}^{2}>r_{23}^{2}$ and $1-r_{23}^{2}>r_{13}^{2}$, let us examine the differences in profits between the feasible strategies.

$$
\begin{aligned}
\Pi_{N M F P S}-\Pi_{P M F P S 1} & =0.25\left[\left(d_{1}^{2}+d_{2}^{2}-y\left(d_{1}^{2}+d_{3}^{2}-2 r_{13} d_{1} d_{3}\right)\right]\right. \\
& =0.25 y\left[d_{2}^{2}\left(1-r_{13}^{2}\right)-\left(d_{1} r_{13}-d_{3}\right)^{2}\right] \\
& >0.25 y\left[d_{2}^{2} r_{23}^{2}-\left(d_{1} r_{13}-d_{3}\right)^{2}\right] \quad \text { since } 1-r_{13}^{2}>r_{23}^{2} \\
& =0.25 y\left[\left(d_{2} r_{23}-d_{1} r_{13}+d_{3}\right)\left(d_{2} r_{23}+d_{1} r_{13}-d_{3}\right)\right. \\
& \geq 0
\end{aligned}
$$

This last statement is true since: (a) $d_{3}-d_{1} r_{13} \geq 0$ which is a feasibility condition for PMFPS1; and (b) $d_{2} r_{23}+d_{1} r_{13}-d_{3} \geq 0$ which is the range for the parameter $d_{3}$ we are investigating. Hence, we can conclude that NMFPS is preferred over PMFPS1. In a similar manner it is possible to show that $\Pi_{N M F P S}-\Pi_{P M F P S 2}>0$ and thus, NMFPS is also preferred over PMFPS2.

Now in the range $0<d_{3} \leq r_{13} d_{1}+r_{23} d_{2}$, we know that $\Pi_{S M F P S}=d_{3}^{2}$ is monotonically increasing. Thus, it achieves its maximum when $d_{3}=r_{13} d_{1}+r_{23} d_{2}$ and hence, let us consider:

$$
\begin{aligned}
& \Pi_{S M F P S}\left(d_{3}=r_{13} d_{1}+r_{23} d_{2}\right)-\Pi_{N M F P S} \\
= & \left(d_{1} r_{13}+d_{2} r_{23}\right)^{2}-\left(d_{1}^{2}+d_{2}^{2}\right) \\
= & d_{1}^{2} r_{13}^{2}+d_{2}^{2} r_{23}^{2}+2 d_{1} d_{2} r_{13} r_{23}-\left(d_{1}^{2}+d_{2}^{2}\right) \\
= & -\left(d_{1}^{2}+d_{2}^{2}\right)\left(1-r_{13}^{2}-r_{23}^{2}\right)+\left(2 d_{1} d_{2} r_{13} r_{23}-d_{1}^{2} r_{23}^{2}-d_{2}^{2} r_{13}^{2}\right) \\
= & -\left(d_{1}^{2}+d_{2}^{2}\right)\left(1-r_{13}^{2}-r_{23}^{2}\right)-\left(d_{1} r_{23}-d_{2} r_{13}\right)^{2} \\
< & 0
\end{aligned}
$$

As a result, when $0<d_{3}<r_{13} d_{1}+r_{23} d_{2}$ we know that the profits under NMFPS dominate the
profits under SMFPS, PMFPS1, and PMFPS2. Hence, in this range, the preferred strategy is NMFPS.

Case 2: $d_{3} \in\left(\tau_{1}, \tau_{2}\right]$
In this range, the solution provided by APS is feasible. Given that this solution is globally optimal for our problem (since $\Pi$ is strictly concave - see Appendix 1), it is obvious that APS would dominate all other potentially feasible strategies for this range.

Case 3: $d_{3} \in\left(\tau_{2}, \tau_{3}\right)$ or

$$
\underline{\min \left\{r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}, r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}\right\}<d_{3}<\max \left\{r_{13}^{-1} d_{1}, r_{23}^{-1} d_{2}\right\}}
$$

In general, PMFPS1, PMFPS2, NMFPS and SMFPS are all feasible strategies in this range. We consider two separate sub-cases to identify the dominant strategy.

Case 3A: $r_{13}^{-1} d_{1} \leq r_{23}^{-1} d_{2}$
In this case,

$$
r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}-\left(r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}\right)=\left(1-r_{13}^{2}-r_{23}^{2}\right)\left[r_{13}^{-1} d_{1}-r_{23}^{-1} d_{2}\right]<0
$$

This implies that the range specified in Case 3, can be restated as $r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}<$ $d_{3}<r_{23}^{-1} d_{2}$. In this range, PMFPS1 is infeasible since $r_{13}^{-1} d_{1}-\left(r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}\right)=$ $r_{23}^{2}\left(r_{13}^{-1} d_{1}-r_{23}^{-1} d_{2}\right)<0$. Thus, under Case 3A, the feasible strategies are PMFPS2, NMFPS, and SMFPS. Comparing profits for these strategies:

$$
\Pi_{P M F P S 2}-\Pi_{S F M P S}=0.25 z\left[\left(d_{2}-r_{23} d_{3}\right)^{2}\right]>0
$$

Now it is easy to show that $\Pi_{P M F P S 2}$ is monotonically increasing in the range for $d_{3}$ given by Case 3A. Thus, the profits under PMFPS2 are minimum when $d_{3}=r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}+\epsilon$ where $\epsilon$ is set to be sufficiently small. Say $\epsilon \approx 0$, then consider:

$$
\begin{aligned}
& \Pi_{P M F P S 2}\left(d_{3}=r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}\right)-\Pi_{N F M P S} \\
& =d_{2}^{2}+\left(1-r_{23}^{2}\right)^{-1}\left(d_{3}-r_{23} d_{2}\right)^{2}-\left(d_{1}^{2}+d_{2}^{2}\right) \\
& =\left(1-r_{23}^{2}\right)^{-1}\left(r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)\right)^{2}-d_{1}^{2} \\
& =r_{13}^{-2} d_{1}^{2}\left(1-r_{23}^{2}\right)-d_{1}^{2}>0 \quad \text { since } 1-r_{23}^{2}>r_{13}^{2} \Rightarrow r_{13}^{-2}\left(1-r_{23}^{2}\right)>1
\end{aligned}
$$

Given these results, we can conclude that PMFPS2 is the dominant strategy for Case 3A.

Case 3B: $r_{13}^{-1} d_{1}>r_{23}^{-1} d_{2}$
In this case,

$$
r_{13}^{-1} d_{1}\left(1-r_{23}^{2}\right)+d_{2} r_{23}-\left(r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}\right)=\left(1-r_{13}^{2}-r_{23}^{2}\right)\left[r_{13}^{-1} d_{1}-r_{23}^{-1} d_{2}\right]>0
$$

This implies that the range specified in Case 3, can be restated as $r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}<$ $d_{3}<r_{13}^{-1} d_{1}$. In this range, PMFPS2 is infeasible since $r_{23}^{-1} d_{2}-\left(r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}\right)=$ $r_{13}^{2}\left(r_{23}^{-1} d_{2}-r_{13}^{-1} d_{1}\right)<0$. Thus, under Case 3B, the feasible strategies are PMFPS1, NMFPS, and SMFPS. Comparing profits for these strategies:

$$
\Pi_{P M F P S 1}-\Pi_{S F M P S}=0.25 y\left[\left(d_{1}-r_{13} d_{3}\right)^{2}\right]>0
$$

Now it is easy to show that $\Pi_{P M F P S 1}$ is monotonically increasing in the range for $d_{3}$ given by Case 3B. Thus, the profits under PMFPS1 are minimum when $d_{3}=r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}+\epsilon$ where $\epsilon$ is set to be sufficiently small. Say $\epsilon \approx 0$, then as with Case 3A, it can be shown that:

$$
\Pi_{P M F P S 1}\left(d_{3}=r_{23}^{-1} d_{2}\left(1-r_{13}^{2}\right)+d_{1} r_{13}\right)-\Pi_{N F M P S}>0
$$

Given these results, we can conclude that PMFPS1 is the dominant strategy for Case 3B.
Case 4: $d_{3} \in\left[\tau_{3}, \infty\right)$
When $r_{13}^{-1} d_{1} \leq r_{23}^{-1} d_{2}$

$$
\begin{aligned}
& \Pi_{S M F P S}\left(d_{3}=r_{23}^{-1} d_{2}\right)-\Pi_{N F M P S} \\
= & r_{23}^{-2} d_{2}-\left(d_{1}^{2}+d_{2}^{2}\right) \\
= & r_{23}^{-2} d_{2}\left(1-r_{23}^{2}\right)-d_{1}^{2} \\
> & r_{23}^{-2} d_{2} r_{13}^{2}-d_{1}^{2} \quad \text { since } 1-r_{23}^{2}>r_{13}^{2} \\
> & 0 \quad \text { since } r_{13}^{-1} d_{1}<r_{23}^{-1} d_{2} \Rightarrow r_{23}^{-1} d_{2} r_{13}>d_{1}
\end{aligned}
$$

Similarly, when $r_{13}^{-1} d_{1}>r_{23}^{-1} d_{2} \Pi_{S M F P S}\left(d_{3}=r_{13}^{-1} d_{1}\right)-\Pi_{N F M P S}>0$. Let $A=\max$ $\left\{r_{13}^{-1} d_{1}, r_{23}^{-1} d_{2}\right\}$, it is obvious that $\Pi_{S M F P S}\left(d_{3}=x\right)>\Pi_{S M F P S}\left(d_{3}=A\right)$ for $\forall x>A$. Since PMFPS1 and PMFPS2 are infeasible in this region, SMFPS is the only dominant strategy when $\max \left\{r_{13}^{-1} d_{1}, r_{23}^{-1} d_{2}\right\} \leq d_{3}$.

