Online Supplement for

"Optimal Contract Design for Mixed Channels Under Information Asymmetry" by Samar K. Mukhopadhyay, Xiaowei Zhu, and Xiahang Yue

Appendix

Proof of Proposition 1(a)

$$
\pi^{I}=p_{1} d_{1}+\left(p_{2}-c_{v}\right) d_{2}=p_{1}\left(a-p_{1}+r\left(p_{2}-v\right)\right)+\left(p_{2}-\frac{\eta v^{2}}{2}\right)\left(a-p_{2}+v+p_{1} r\right)
$$

Then we take first order condition with respect to p_{1}, p_{2} and v, and set them equal to zero, respectively. After that, solving these three equations simultaneously, we can get the desired result.

Proof of Proposition 1(b)
$\pi_{R}^{F}=\left(p_{2}^{*}-w-C_{v}^{*}\right) d_{2}+L^{F}=\pi_{\bar{R}}$
$\Rightarrow L^{F}=\pi_{\bar{R}}-\left(\frac{2 a \eta+1}{4 \eta}\right)^{2}$

$$
\pi_{M}=\left\{\begin{array}{ccc}
\frac{a}{4 \eta}+\frac{1}{16 \eta^{2}}+\frac{a^{2}}{2(1-r)}-\pi_{\bar{R}} & \underline{\eta} \leq \eta \leq N & \text { (a) } \\
\pi_{\bar{M}} & N \leq \eta \leq \bar{\eta} & \text { (b) }
\end{array}\right\}
$$

Setting (a) = (b), we get

$$
N=\frac{1}{-2 a+2 \sqrt{4 \pi_{\bar{M}}+4 \pi_{\bar{R}}-a^{2} \frac{1+r}{1-r}}} \text { where } \pi_{\bar{M}}+\pi_{\bar{R}} \geq \frac{a^{2}(1+r)}{4(1-r)}
$$

Due to $\mathrm{N}>0$, we only keep the one with positive value.

Proof of Proposition 2(a)

The equation (10), (11) and (12) can be written as:

$$
\max \int_{\underline{1}}^{v} m(\eta) d \eta+\Phi(N)
$$

s.t.

$$
\dot{L}(\eta)=g_{1}(\eta), \quad \dot{w}(\eta)=g_{2}(\eta), \quad \dot{p}_{1}(\eta)=g_{3}(\eta)
$$

This is obtained by making the following variable substitution:

$$
\begin{aligned}
& m:=\left(p_{1} d_{1}\left(p_{2}^{r}\right)+w d_{2}\left(p_{2}^{r}\right)-L\right) f \\
& =\left\{p_{1}\left[\left(1+\frac{r}{2}\right) a+\left(\frac{r^{2}}{2}-1\right) p_{1}-\frac{r}{4 \eta}\right]+w\left(\frac{a}{2}+\frac{1}{4 \eta}-\frac{w}{2}\right)+r w p_{1}-L\right\} f, \\
& g_{1}=\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right)\left(u_{1}-r u_{2}\right), g_{2}=u_{1}, g_{3}=u_{2}, \\
& \Phi(N)=\pi_{\bar{M}}(1-F) .
\end{aligned}
$$

Using the multiplier equations gives following results:
$\dot{\lambda}_{1}=f$ and $\lambda_{1}=F$
$\dot{\lambda}_{2}=-\left(-w+\frac{a}{2}+\frac{1}{4 \eta}+r p_{1}\right) f+\frac{\lambda_{1}}{2}\left(u_{1}-r u_{2}\right)$
$\dot{\lambda}_{3}=-\left[a\left(1+\frac{r}{2}\right)+2 p_{1}\left(\frac{r^{2}}{2}-1\right)-\frac{r}{4 \eta}+r w\right] f-\frac{\lambda_{1} r\left(u_{1}-r u_{2}\right)}{2}$
Using the optimality conditions gives following results:

$$
\begin{align*}
& \lambda_{1}\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right)+\lambda_{2}=0 \tag{2.4}\\
& -r \lambda_{1}\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right)+\lambda_{3}=0 \tag{2.5}
\end{align*}
$$

Taking derivative on both sides of (2.4) and using (2.1), we get
$\dot{\lambda}_{2}=-\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right) f-F\left(-\frac{1}{4 \eta^{2}}+\frac{r}{2} u_{2}-\frac{u_{1}}{2}\right)$
Solving (2.6) with (2.2), we get $\frac{F}{2 \eta^{2}}=f w-f r p_{1}$
Taking derivative on both sides of (2.5) and using (2.1), we get
$\dot{\lambda}_{3}=r f\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right)+r F\left(-\frac{1}{4 \eta^{2}}+\frac{r}{2} u_{2}-\frac{u_{1}}{2}\right)$
Solving (2.8) with (2.3), we get $\frac{r F}{4 \eta^{2}}=f\left[a+a r+\left(\frac{3 r^{2}}{2}-2\right) p_{1}+\frac{r w}{2}\right]$
Solving (2.7) and (2.9) together, we get desired result
$p_{1}^{A}=\frac{a}{2(1-r)}, w^{A}=\frac{F}{2 f \eta^{2}}-\frac{r a}{2(1-r)}$ and
$\dot{L}(\eta)=g_{1}(\eta)=\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right)\left(u_{1}-r u_{2}\right)=\left(\frac{1}{4 \eta}+\frac{a+r p_{1}-w}{2}\right) \dot{w}$.
Using the transversality conditions if N is free
$m(N)+\lambda_{1}(N) g_{1}(N)+\lambda_{2}(N) g_{2}(N)+\lambda_{3}(N) g_{3}(N)+\Phi_{N}=0$ at N
we get the following results: $\left(p_{1} d_{1}+w d_{2}-L-\pi_{M}\right) f=0$. Because $f \neq 0$, $p_{1} d_{1}+w d_{2}-L-\pi_{\bar{M}}$ must equals to 0 . The manufacturer can make $p_{1} d_{1}+w d_{2}-L-\pi_{\bar{M}} \geq 0$ binding at $\eta_{1}, \eta_{1}=N$. Then substitute p_{1} and w with $p_{1}^{A}(\mathrm{~N})$ and $w^{A}(\mathrm{~N})$, we get that $\mathrm{L}(\mathrm{N})^{\mathrm{A}}$ satisfies

$$
-\frac{F^{2}}{8 N^{4} f^{2}}+\frac{a F}{4 N^{2} f}+\frac{F}{8 N^{3} f}+\frac{a^{2}(1+r)}{4(1-r)}-L(N)^{A}=\pi_{\bar{M}}^{-} .
$$

η_{0} can be solved by let $\left(p_{2}^{A}-w^{A}-c_{v}{ }^{A}\right) d_{2}+L^{A} \geq \pi_{\bar{R}}$ binding at η_{0}.

Proof of Proposition 3

(i) Manufacturer: Adding $\pi_{R}^{I}+\pi_{M}^{I} \geq \pi_{R}^{A}+\pi_{M}^{A}$ from the proposition 3(ii) and $\pi_{R}^{A} \geq \pi_{R}^{I}$ from the proposition 3 (iii), we can get $\pi_{M}^{I} \geq \pi_{M}^{A}$.
(ii) Retailer: Under (I), the retailer earns her reservation profit through the whole range of η. Under (A), it is always higher or equal to her reservation profit. Therefore,
$\pi_{R}^{I} \leq \pi_{R}^{A}$ for all η. As an example, suppose follows a Uniform distribution where $F=\frac{\eta-\eta_{0}}{\eta_{3}-\eta_{0}}, f=\frac{1}{\eta_{3}-\eta_{0}}$. Then, $\pi_{R}^{A}=\frac{a}{2}+\frac{\eta_{0}}{4 \eta^{2}}$ which is decreasing with η to a value of $\pi_{\bar{R}}$ at $\eta=N^{A}$. At the same time, profit for the case I is constant at $\pi_{\bar{R}}$ for all η, so we have $\pi_{R}{ }^{I} \leq \pi_{R}{ }^{A}$.
(iii) The supply chain: The supply chain profit under (I) $\pi^{I}=\frac{a}{4 \eta}+\frac{1}{16 \eta^{2}}+\frac{a^{2}}{2(1-r)}$ and the supply chain profit under (A) is $\pi^{A}=\pi_{R}^{A}+\pi_{M}^{A}=\frac{a}{4 \eta}+\frac{1}{16 \eta^{2}}+\frac{a^{2}}{2(1-r)}-\frac{F^{2}}{16 \eta^{4} f^{2}}$ Obviously, $\pi^{\mathrm{I}}>\pi^{\mathrm{A}}$.
Proof of Proposition 6
Under uniform distribution:
$d_{2}^{I}=\frac{a}{2}+\frac{1}{4 \eta}$ and $d_{2}^{A}=\frac{a}{2}+\frac{1}{4 \eta}-\frac{F}{4 f \eta^{2}} . \quad$ So $d_{2}^{I} \geq d_{2}^{A}$.
$d_{1}^{I}=\frac{a}{2}-\frac{r}{4 \eta}$ and $d_{1}^{A}=\frac{a}{2}-\frac{r}{4 \eta}+\frac{r F}{4 f \eta^{2}} . \quad$ So $d_{1}^{I} \leq d_{1}^{A}$.

