Appendix

PROOF to PROPOSITION 3.1
Let $\dot{\tilde{m}}(t)=-\varepsilon \widetilde{m}(t), \widetilde{m}(0)=m^{0} \geqslant 0$. Then $\widetilde{m}(t)=m^{0} e^{-\varepsilon t} \geqslant 0$, for $0 \leqslant t \leqslant T$. Since $a h\left(P_{2}, m, Q_{2}\right) g\left(0, Q_{1}\right)+h\left(P_{2}, m, Q_{2}\right) \geqslant 0$, it is obvious that $m(t) \geqslant \widetilde{m}(t) \geqslant 0$, where $m(t)$ is a solution of (6) for arbitrary $P_{2}(t)$ and $Q_{1}(t)$. Since $m(t) \geqslant 0$, we can similarly conclude that $Q_{1}(t) \geqslant 0$ for $0 \leqslant t \leqslant T$. Moreover, it is easy to see that $m^{0}>0$ and $Q_{1}^{0}>0$ imply $m(t)>0$ and $Q_{1}(t)>0$ for $0 \leqslant t \leqslant T$.

PROOF to PROPOSITION 3.2

(a) From (4), we see that $V_{O}^{\alpha}\left(0, Q_{1}^{0}, m^{0}\right)=J\left(P_{2}^{*}(t \mid\right.$ $\alpha)$) or simply $V_{O}^{\alpha}=J\left(P_{2}^{*}(t \mid \alpha)\right)$, where $P_{2}^{*}(t \mid$ α) is the optimal price trajectory given α. Let $Q_{1}^{P_{2}(t)}(t \mid \alpha)$ denote the software quality trajectory given a price trajectory $P_{2}(t)$ and α. Similarly, let $m^{P_{2}(t)}(t \mid \alpha)$ denote the user network size trajectory given a price trajectory $P_{2}(t)$ and α.
From (5), we have $Q_{1}(t)=Q_{1}^{0} e^{-\delta t}+$ $\alpha e^{-\delta t} \int_{0}^{t} e^{\delta \tau} m(\tau) d \tau$, which increases with α for every fixed trajectory $m(t)$. Next we see from (6) that for a given price trajectory $P_{2}(t) \geqslant 0$, $\frac{\partial \dot{m}(t)}{\partial Q_{1}(t)}=\operatorname{ah}\left(P_{2}(t), m(t), Q_{2}(t)\right) \frac{\partial g(t)}{\partial Q_{1}(t)} \geqslant 0$, which means that $\dot{m}(t)$ increases with $Q_{1}(t)$. This implies that both $Q_{1}(t)$ and $m(t)$ increase as α increases for a given price trajectory $P_{2}(t) \geqslant 0$.
Let $0<\alpha_{1}<\alpha_{2}$. Then $Q_{1}^{P_{2}(t)}\left(t \mid \alpha_{1}\right) \leqslant$ $Q_{1}^{P_{2}(t)}\left(t \mid \alpha_{2}\right)$ and $m^{P_{2}(t)}\left(t \mid \alpha_{1}\right) \leqslant m^{P_{2}(t)}(t \mid$ $\left.\alpha_{2}\right)$. By the assumption on the functions h and σ, it is apparent that $J\left(P_{2}\left(t \mid \alpha_{1}\right) \leqslant J\left(P_{2}(t \mid\right.\right.$ $\left.\alpha_{2}\right)$. By definition, $J\left(P_{2}\left(t \mid \alpha_{1}\right) \leqslant J\left(P_{2}^{*}(t \mid\right.\right.$ $\left.\alpha_{1}\right) \leqslant J\left(P_{2}\left(t \mid \alpha_{2}\right) \leqslant J\left(P_{2}^{*}\left(t \mid \alpha_{2}\right)\right.\right.$. Therefore, $V_{O}^{\alpha_{1}} \leqslant V_{O}^{\alpha_{2}}$. This completes the proof.
(b) The proof is similar to part (a).

PROOF to PROPOSITION 3.3

From Proposition 3.2 part (b), we know that $\frac{\partial V_{O}\left(0, Q_{1}(0)\right)}{\partial Q_{1}(0)} \geqslant 0$. Therefore, $\lambda(0)=$ $\frac{\partial V_{O}\left(0, Q_{1}(0)\right)}{\partial Q_{1}(0)} \geqslant 0$. The same argument extends to $\lambda(t)=\frac{\partial V_{O}\left(0, Q_{1}(t)\right)}{\partial Q_{1}(t)} \geqslant 0$.

PROOF to PROPOSITION 3.4 This proof requires Lemma. 1

LEMMA . 1 In the open source model, $P_{2}+\mu\left(a g\left(0, Q_{1}\right)+\right.$ $1) \geqslant 0$, for $0 \leqslant t \leqslant T$.

PROOF to LEMMA. 1

According to (11) and (12), we know that there are two cases:

Case1:

$$
\begin{gathered}
\left.\left\{h\left(P_{2}, m, Q_{2}\right)+\left[P_{2}+\mu\left(\operatorname{ag}\left(0, Q_{1}\right)+1\right)\right] \frac{\partial h}{\partial P_{2}}\right\}\right|_{P_{2}=0} \leqslant 0 \\
\text { and } \eta_{2} \geqslant 0,
\end{gathered}
$$

and Case2:

$$
\begin{gathered}
\left.\left\{h\left(P_{2}, m, Q_{2}\right)+\left[P_{2}+\mu\left(a g\left(0, Q_{1}\right)+1\right)\right] \frac{\partial h}{\partial P_{2}}\right\}\right|_{P_{2}>0}=0 \\
\text { and } \eta_{2}=0 .
\end{gathered}
$$

In case $1,\left.\quad\left[P_{2}+\mu\left(\operatorname{ag}\left(0, Q_{1}\right)+1\right)\right]\right|_{P_{2}=0}=$ $\mu\left(\operatorname{ag}\left(0, Q_{1}\right)+1\right) \geqslant-h\left(P_{2}, m, Q_{2}\right) /\left.\frac{\partial h}{\partial P_{2}}\right|_{P_{2}=0} \geqslant 0$. In case 2, $\left.\left[P_{2}+\mu\left(\operatorname{ag}\left(0, Q_{1}\right)+1\right)\right]\right|_{P_{2}>0}=$ $-h\left(P_{2}, m, Q_{2}\right) /\left.\frac{\partial h}{\partial P_{2}}\right|_{P_{2}>0} \geqslant 0$. The result follows.

By contradiction. Suppose at an arbitrarily chosen time $\tau \in[0, T], \mu(\tau)<0$. By Proposition 3.3 and Lemma. 1.

$$
\dot{\mu}=(\rho+\varepsilon) \mu-\alpha \lambda-\left[P_{2}+\mu\left(a g\left(0, Q_{1}\right)+1\right)\right] \frac{\partial h}{\partial m}<0 .
$$

Therefore, $\mu(\tau)<0$ for $\tau \leqslant t \leqslant T$. This contradicts $\mu(T) \geqslant 0$. So $\mu(\tau) \geqslant 0$. Since τ is arbitrary, we can conclude that $\mu(T) \geqslant 0$ for $0 \leqslant t \leqslant T$.

PROOF to PROPOSITION 3.5

If $P_{2}^{*}>0, \quad$ then $h+P_{2} \frac{\partial h}{\partial P_{2}}+$ $\left.\mu\left(\operatorname{ag}\left(0, Q_{1}\right)+1\right) \frac{\partial h}{\partial P_{2}}\right|_{P_{2}^{*}}=0$ (from (11)). By Proposition 3.4 and the assumptions that $g \geqslant 0$ and $\frac{\partial h}{\partial P_{2}} \leqslant 0$, we have $\left.\mu\left(\operatorname{ag}\left(0, Q_{1}\right)+1\right) \frac{\partial h}{\partial P_{2}}\right|_{P_{2}^{*}} \leqslant 0$. Therefore, $h+\left.P_{2} \frac{\partial h}{\partial P_{2}}\right|_{P_{2}^{*}} \geqslant 0 . \quad$ By definition, $\left.\quad \frac{\partial F_{O}}{\partial P_{2}}\right|_{\hat{P}_{2}}=h+\left.P_{2} \frac{\partial h}{\partial P_{2}}\right|_{\hat{P}_{2}}=0$. Then $\hat{P}_{2}=h+\left.P_{2} \frac{\partial h}{\partial P_{2}}\right|_{\hat{P}_{2}} \geqslant 0$. By the concavity of F_{O}, we conclude $P_{2}^{*}(t) \leqslant \hat{P}_{2}\left(m^{*}(t), Q_{2}(t)\right)$ for $0 \leqslant t \leqslant T$. Moreover, if the salvage value is zero at time T, then $\mu(T)=0$. From the previous argument, it is easy to show $P_{2}^{*}(T)=\hat{P}_{2}\left(m^{*}(T), Q_{2}(T)\right)$.

PROOF to PROPOSITION 3.6 The proof is similar to that of Proposition 3.1

PROOF to PROPOSITION 3.7

The proofs for part (a) and (b) are similar to that of Proposition 3.2 (c) Using the Envelope Theorem (e.g., Varian, 1978, Page 268), we have $\frac{d V_{C}}{d w}=\frac{\partial L}{\partial w}=$ $-\int_{0}^{T} N^{2} d t$. Therefore, the optimal closed source profit decreases with w.

PROOF to PROPOSITION 3.8 The proof is similar to that of Proposition 3.3

PROOF to PROPOSITION 3.9.

The proof requires Lemma. 2 and Proposition 3.8
LEMMA . 2 In the closed source model, $P_{1}+a \mu \geqslant 0$ and $P_{2}+\mu+\left(P_{1}+a \mu\right) g\left(P_{1}, Q_{1}\right) \geqslant 0$, for $0 \leqslant t \leqslant T$.

PROOF to LEMMA. 2 The proof is similar to that of Lemma 1

By contradiction. Suppose at an arbitrarily chosen time $\tau \in[0, T], \mu(\tau)<0$. By Proposition 3.8 and Lemma. 2.
$\dot{\mu}=(\rho+\varepsilon) \mu-\left[P_{2}+\mu+\left(P_{1}+a \mu\right) g\left(P_{1}, Q_{1}\right)\right] \frac{\partial h}{\partial m}<0$.
Therefore, $\mu(\tau)<0$ for $\tau \leqslant t \leqslant T$. This contradicts $\mu(T) \geqslant 0$. So $\mu(\tau) \geqslant 0$. Since τ is arbitrary, we can conclude that $\mu(T) \geqslant 0$ for $0 \leqslant t \leqslant T$.

PROOF to PROPOSITION 3.10
If $P_{1}^{*}>0$, then $\left(g\left(P_{1}, Q_{1}\right)+P_{1} \frac{\partial g}{\partial P_{1}}\right) h\left(P_{2}, m, Q_{2}\right)+$ $\left.a \mu \frac{\partial g}{\partial P_{1}} h\left(P_{2}, m, Q_{2}\right)\right|_{P_{1}^{*}, P_{2}^{*}}=0$ (from (20). We can also say that $g\left(P_{1}, Q_{1}\right)+P_{1} \frac{\partial g}{\partial P_{1}}+\left.a \mu \frac{\partial g}{\partial P_{1}}\right|_{P_{1}^{*}}=0$. By Proposition 3.9 and the assumption that $\frac{\partial g}{\partial P_{1}} \leqslant 0$, we have $\left.a \mu \frac{\partial g}{\partial P_{1}}\right|_{P_{1}^{*}} \leqslant 0$. Therefore, $g\left(P_{1}, Q_{1}\right)+\left.P_{1} \frac{\partial g}{\partial P_{1}}\right|_{P_{1}^{*}} \geqslant$ 0. By definition, $\left.\frac{\partial F_{C}}{\partial P_{1}}\right|_{\hat{P}_{1}, \hat{P}_{2}}=\left(g\left(P_{1}, Q_{1}\right)+P_{1} \frac{\partial g}{\partial P_{1}}\right)$ $\left.h\left(P_{2}, m, Q_{2}\right)\right|_{\hat{P}_{1}, \hat{P}_{2}}=0$. We can also say that $g\left(P_{1}, Q_{1}\right)+\left.P_{1} \frac{\partial g}{\partial P_{1}}\right|_{\hat{P}_{1}}=0$. Then $\hat{P}_{1}=-g /\left.\frac{\partial g}{\partial P_{1}}\right|_{\hat{P}_{1}} \geqslant$ 0 . By the concavity of F_{C}, we conclude $P_{1}^{*}(t) \leqslant$ $\hat{P}_{1}\left(m^{*}(t), Q_{1}^{*}(t), Q_{2}(t)\right)$ for $0 \leqslant t \leqslant T$. Similarly, if
$P_{2}^{*}>0$, then $h\left(P_{2}, m, Q_{2}\right)+\left[P_{2}+P_{1} g\left(P_{1}, Q_{1}\right)\right] \frac{\partial h}{\partial P_{2}}+$ $\left.\mu\left(a g\left(P_{1}, Q_{1}\right)+1\right) \frac{\partial h}{\partial P_{2}}\right|_{P_{1}^{*}, P_{2}^{*}}=0$ (from (21). Clearly, P_{2}^{*} is a function of P_{1}^{*}. Let $P_{2}^{*}\left(P_{1}\right)$ is the solution to $h\left(P_{2}, m, Q_{2}\right)+\left[P_{2}+P_{1} g\left(P_{1}, Q_{1}\right)\right] \frac{\partial h}{\partial P_{2}}+$ $\mu\left(a g\left(P_{1}, Q_{1}\right)+1\right) \frac{\partial h}{\partial P_{2}}=0$. It can be shown that $P_{2}^{*}\left(P_{1}^{*}\right) \leqslant P_{2}^{*}\left(\hat{P}_{1}\right)$. By Proposition 3.9 and the assumptions that $g \geqslant 0$ and $\frac{\partial h}{\partial P_{2}} \leqslant 0$, we have $\left.\mu\left(\operatorname{ag}\left(P_{1}, Q_{1}\right)+1\right) \frac{\partial h}{\partial P_{2}}\right|_{P_{1}^{*}, P_{2}^{*}} \leqslant 0$. Therefore, $h\left(P_{2}, m, Q_{2}\right)+\left.\left[P_{2}+P_{1} g\left(P_{1}, Q_{1}\right)\right] \frac{\partial h}{\partial P_{2}}\right|_{P_{1}^{*}, P_{2}^{*}} \geqslant$ 0. By definition, $\left.\frac{\partial F_{C}}{\partial P_{2}}\right|_{\hat{P}_{2}}=h\left(P_{2}, m, Q_{2}\right)+$ $\left.\left[P_{2}+P_{1} g\left(P_{1}, Q_{1}\right)\right] \frac{\partial h}{\partial P_{2}}\right|_{\hat{P}_{1}, \hat{P}_{2}}=0$. Clearly, \hat{P}_{2} is a function of \hat{P}_{1}. We denote it as $\hat{P}_{2}\left(\hat{P}_{1}\right)$. By the concavity of F_{C}, we know that $P_{2}^{*}\left(\hat{P}_{1}\right) \leqslant \hat{P}_{2}\left(\hat{P}_{1}\right)$. Therefore, $P_{2}^{*}\left(P_{1}^{*}\right) \leqslant \hat{P}_{2}\left(\hat{P}_{1}\right)$. we conclude $P_{2}^{*}(t) \leqslant$ $\hat{P}_{2}\left(m^{*}(t), Q_{1}^{*}(t), Q_{2}(t)\right)$ for $0 \leqslant t \leqslant T$. Moreover, if the salvage value is zero at time T, then $\mu(T)=0$. From the previous argument, it is easy to show $P_{1}^{*}(T)=\hat{P}_{1}\left(m^{*}(T), Q_{1}^{*}(t), Q_{2}(T)\right)$ and $P_{2}^{*}(T)=$ $\hat{P}_{2}\left(m^{*}(T), Q_{1}^{*}(t), Q_{2}(T)\right)$.

PROOF to COROLLARY4.1

(i) Exponential demand function. From Proposition 4.1. $P_{2}^{*}(t) \leqslant m^{*}(t) Q_{2}(t)$. From (6), $\dot{m}=$ $\left(a \exp \left(-\frac{c}{Q_{1}}\right)+1\right) \exp \left(-\frac{P_{2}}{m Q_{2}}\right)-\varepsilon m, m(0)=m^{0}$. Let $\dot{\bar{m}}=(a+1)-\varepsilon m, \bar{m}(0)=m^{0}$. Then $\bar{m}(t)=m^{0} e^{-\varepsilon t}+$ $(a+1)\left(1-e^{-\varepsilon t}\right) / \varepsilon, 0 \leqslant t \leqslant T$. Clearly, $\dot{\bar{m}}>\dot{m}$. The result follows.
(ii) Linear-price demand function. Proof is similar to (i).

PROOF to COROLLARY4.2

(i) Exponential demand function. From Proposition 4.1, $P_{1}^{*}(t) \leqslant Q_{1}^{*}(t)$. From (14), $\dot{Q}_{1}=k N-$ $\delta Q_{1}, Q_{1}(0)=Q_{1}^{0}$. Let $\dot{\bar{Q}}_{1}=k N(0)-\delta \bar{Q}_{1}, \bar{Q}_{1}(0)=Q_{1}^{0}$, where $N(0)$ is the number of in-house programmers at time 0 . Then $\bar{Q}_{1}(t)=Q_{1}^{0} e^{-\delta t}+k N(0)\left(1-e^{-\delta t}\right) / \delta$, $0 \leqslant t \leqslant T . \dot{\bar{Q}}_{1}>\dot{Q}_{1}$ since N is decreasing over time. The result follows.

From Proposition 4.1. $P_{2}^{*}(t) \leqslant m^{*}(t) Q_{2}(t)-$ $\hat{P}_{1}^{*}(t) g\left(\hat{P}_{1}^{*}(t), Q_{1}^{*}(t)\right) \leqslant m^{*}(t) Q_{2}(t)$. From (15), $\dot{m}=$
$\left(a \exp \left(-\frac{P_{1}+c}{Q_{1}}\right)+1\right) \exp \left(-\frac{P_{2}}{m Q_{2}}\right)-\varepsilon m, m(0)=m^{0}$. Let $\dot{\bar{m}}=(a+1)-\varepsilon m, \bar{m}(0)=m^{0}$. Then $\bar{m}(t)=$ $m^{0} e^{-\varepsilon t}+(a+1)\left(1-e^{-\varepsilon t}\right) / \varepsilon, 0 \leqslant t \leqslant T$. Clearly, $\dot{\bar{m}}>\dot{m}$. The result follows.
(ii) Linear-price demand function. Proof is similar to (i).

