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1 Appendix

Proof of Proposition 1. 1) With a little algebra, we can get, if 1 > r > 0 holds, then
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and if r > 1 holds, then

R (�j r) =
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Therefore R (�j r) is minimized when �T � (�rT�(cf�cd))
(�+h)2�h2 (� + h) = 0. This leads to our part

1) conclusion in view of the boundary conditions for �.

2) �� > 0 hold if and only if �rT � (cf � cd) > 0; and �� < 1 hold if and only if
(�rT�(cf�cd))
(�+h)2�h2 (� + h) < T . This leads to our part 2) conclusion.

3) Part 3) conclusion is true because (cf � cd) > 0 and �+h
�+2h < 1.

Proof of Algorithm 1. We �rst examine the situations where lf 6 T holds. We will analyze
the cases de�ned in (8). For the case � <

lf

T ; r 6 1, since it is obvious that the optimal lf is lf ,
we focus on the decision for �. It can be seen that R

�
�; l�f jr

�
is linear in � with the �rst order

1

10.1287/POMS.1080.0015ec



Flexible Backup Supply and the Management of Lead-Time Uncertainty 2

derivative
@R

�
�; l�f jr

�
@�

= T
�
��

�
rT � lf

�
+ (cf � cd)

�
Thus, when rT 6 cf�cd

� + lf , the optimal � is 0; when rT >
cf�cd
� + lf , the optimal � is

lf

T .

For the case � > lf

T ; r 6 1, it can be seen that R (�; lf jr ) is convex in lf with the �rst order
derivative

@R (�; lf jr )
@lf

= (� + h) lf � h�T

Therefore the decision rule on lf for given � is: to choose lf = h
�+h�T if h

�+h�T > lf , and

to choose lf otherwise. The value of R (�; lf jr ) at the optimal lf , denoted by R
�
�; l�f jr

�
, is

accordingly given below

R
�
�; l�f jr

�
= (cf � cd)�T +

1

2
� (rT � �T )2 + 1

2
h (T � rT )2

+

8<: 1
2�
�
lf

�2
+ 1

2h
�
�T � lf

�2
if �T > lf ; h

�+h�T < lf ; r 6 1
1
2
�h
�+h (�T )

2 if �T > lf ; h
�+h�T > lf ; r 6 1

The �rst order derivative for R
�
�; l�f jr

�
with respect to � can be obtained as follows

dR
�
�; l�f jr

�
d�

=

8<:
�
(cf � cd) + (� + h)�T � hlf � �rT

�
T �T > lf ; h

�+h�T < lf ; r 6 1�
(cf � cd) + �h

�+h�T + ��T � �rT
�
T �T > lf ; h

�+h�T > lf ; r 6 1

Based on the expression above, it can be seen that with a little algebra, R
�
�; l�f jr

�
is convex in

� over [0; r] for given r. Therefore the optimal � can be determined from the �rst order condition

given above. Particularly, we have: a) if rT < cf�cd
� +lf , then the optimal � is 0. This is because

dR(�;l�f jr )
d� > 0 for � 2 [0; r]; b) if rT is greater than cf�cd

� + lf and less than
cf�cd
� + (�+h)2�h2

�h lf ,

then the optimal �T is �
�+h (rT )+

h
�+h lf�

cf�cd
�+h , which is less than rT . This is because

dR(�;l�f jr )
d�

is negative at � =
�
cf�cd
� + lf

�
=T and is positive at � =

�
cf�cd
� + (�+h)2�h2

�h lf

�
=T ; c) if rT is

greater than cf�cd
� + (�+h)2�h2

�h lf , then the optimal �T is �+h
(�+h)2�h2 (�rT � (cf � cd)), which is

less than rT , since
dR(�;l�f jr )

d� is negative at � =
�
cf�cd
� + (�+h)2�h2

�h lf

�
=T .

Similar spirit above can be applied to analyze the cases for r > 1. For the case � <
lf

T ; r > 1,

it is obvious that the optimal lf is lf . Regarding the decision for �, we can get: if rT 6 cf�cd
� +lf

holds, then the optimal � is 0; if rT > cf�cd
� + lf holds, then the optimal � is

lf

T .

For the case � > lf

T ; r > 1, the optimal lf is lf if
h
�+h�T < lf holds, and is

h
�+h�T otherwise.
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The value of R (�; lf jr ) at the optimal lf , denoted by R
�
�; l�f jr

�
, is

R
�
�; l�f jr

�
= (cf � cd)�T +8>>><>>>:

1
2�
�
lf

�2
+ �

�
lf � �T

��
rT � lf

�
+ 1

2�
�
T � lf

�2
+ � (rT � T )

�
T � lf

�
if � <

lf

T ; r > 1

1
2� (T � �T )

2 + � (T � �T ) (rT � T ) + 1
2�
�
lf

�2
+ 1

2h
�
�T � lf

�2
if �T > lf ; h

�+h�T < lf ; r > 1
1
2� (T � �T )

2 + � (T � �T ) (rT � T ) + 1
2
�h
�+h (�T )

2 if �T > lf ; h
�+h�T > lf ; r > 1

Based on the expression above, we can get the decision of the optimal �T . Particularly, we have:

if rT < cf�cd
� + lf , then the optimal �T is 0 ; if rT is between

cf�cd
� + lf and

cf�cd
� + (�+h)2�h2

�h lf ,

then the optimal �T is �
�+h (rT )+

h
�+h lf �

cf�cd
�+h ; if rT is greater than

cf�cd
� + (�+h)2�h2

�h lf , then

the optimal �T is �+h
(�+h)2�h2 (�rT � (cf � cd)). All of the optimal �T have to be bounded above

by T . Particularly, in case �+h
(�+h)2�h2 (�rT � (cf � cd)) > T and rT >

cf�cd
� + (�+h)2�h2

�h lf ,

then the optimal �T is T with a cost of (cf � cd)T + 1
2
�h
�+hT

2 for R
�
��; l�f jr

�
if h
�+hT > lf ;

and the optimal �T is T with a cost of (cf � cd)T + 1
2�
�
lf

�2
+ 1

2h
�
T � lf

�2
for R

�
��; l�f jr

�
if h
�+hT < lf . In case that �

�+h (rT ) +
h
�+h lf �

cf�cd
�+h > T and rT is between cf�cd

� + lf and
cf�cd
� + (�+h)2�h2

�h lf , then the optimal �T is T with a cost of (cf � cd)T+ 1
2�
�
lf

�2
+ 1
2h
�
T � lf

�2
for R

�
��; l�f jr

�
.

We now examine the situations where lf > T holds. It is obvious that the optimal lf is lf .

Recall that

R (�; lf jr ) = (cf � cd)�T +
1

2
� (�T )2+� (�T )

�
lf � �T

�
+
1

2
� (T � �T )2+�(T ��T ) (rT � T )

It can be seen that with a little algebra, if rT 6 cf�cd
� + lf , then the optimal �T is zero with a

cost of 12�T
2 + �T (rT � T ) for R

�
��; l�f jr

�
; if rT > cf�cd

� + lf , then the optimal �T is T with

a cost of (cf � cd)T + 1
2�T

2 + �T
�
lf � T

�
for R

�
��; l�f jr

�
.

Putting all the above together yields the proof for Algorithm 1.

Proof of Proposition 2. With a little algebra, we can decompose V II
�
Q1; Q2j �0; l; eT� as

follows

V II

�
Q1; Q2j �0; l; eT� = V 1II �Q1j �0; l; eT�+ V 2II �Q2j �0; l; eT�+ (cf � cn)�T � eT� (13)

where

V
1
II

�
Q1j �0; l; eT� = (cf � cd)Q1 + 12 �h

� + h
Q21 +

1

2
� (�0 �Q1)2 (14)
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V
2
II

�
Q2j �0; l; eT� = � (cf � cd)Q2 +

1

2

�h

� + h

�
T � eT �Q2�2 (15)

+

8<:
1
2h
�eT +Q2 � �0�2 if Q1 < �0 6 eT +Q2

�1
2�
�eT +Q2 � �0�2 if Q1 6 eT +Q2 < �0

The �rst order derivatives of V II
�
Q1; Q2j �0; l; eT� with respect to Q1 and Q2 are, respectively,

@V II

�
Q1; Q2j �0; l; eT�
@Q1

= (cf � cd) +
�h

� + h
Q1 + � (Q1 � �0) (16)

@V II

�
Q1; Q2j �0; l; eT�
@Q2

= � (cf � cd) +
�h

� + h

�eT +Q2 � T� (17)

+

8<: h
�eT +Q2 � �0� if Q1 < �0 6 eT +Q2

��
�eT +Q2 � �0� if Q1 6 eT +Q2 < �0

Based on the expressions above (13), (14), (15), (16) and (17), we see that the following properties

hold: 1) V II
�
Q1; Q2j �0; l; eT� is separable in Q1 and Q2; and, V II �Q1; Q2j �0; l; eT� is convex

in Q1; 2) V II
�
Q1; Q2j �0; l; eT� is concave in Q2 for eT + Q2 < �0 and is convex in Q2 for

Q1 < �0 6 eT +Q2. Furthermore, by the expressions for Q1 (�0) and Q2 (�0) and the expressions
above, it can be seen that QUC b=(Q1 (�0) ; Q2 (�0)) is the unique local minimizer of (10) without
constraints.

If Q1 = Q2, then the �rst-order derivative of V II
�
Q2; Q2j �0; l; eT� is

@V II

�
Q2; Q2j �0; l; eT�
@Q2

=
�h

� + h
Q2 +

�h

� + h

�eT +Q2 � T�+ � (Q2 � �0) (18)

+

8<: h
�eT +Q2 � �0� if Q2 < �0 6 eT +Q2

��
�eT +Q2 � �0� if Q2 6 eT +Q2 < �0

The expression above implies that V II
�
Q2; Q2j �0; l; eT� is piecewise convex in Q2. Based on

(18), we can get the expression for the minimizer of V II
�
Q2; Q2j �0; l; eT�. This turns out that

QOAb= �QOA2 ; QOA2
�
is the minimizer of �II

�
Q2; Q2j �0; l; eT�.

If Q1 = eT +Q2, then V II � eT +Q2; Q2��� �0; l; eT� has an expression
(cf � cd) eT + (cf � cn)�T � eT�+ 1

2

�h

� + h

�eT +Q2�2 + 1
2

�h

� + h

�
T � eT �Q2�2
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which is convex in Q2. It can be easily veri�ed that QBC b=�eT +QBC2 ; QBC2

�
is the minimizer

of V II
� eT +Q2; Q2��� �0; l; eT�. Similarly it can be shown that if Q2 = 0, then V II �Q1; 0j �0; l; eT�

is minimized at QCO b= �QCO1 ; 0
�
satisfying

QCO1 =

8>>><>>>:
0 if ��0 6 (cf � cd)

��0�(cf�cd)
�h
�+h

+�
if 0 6 ��0�(cf�cd)

�h
�+h

+�
6 eT

eT if
��0�(cf�cd)

�h
�+h

+�
> eT

, and that if Q2 = T � eT , then V II �Q1; T � eT ��� �0; l; eT� is minimized at QAB = �QAB1 ; T � eT�
satisfying

QAB1 =

8>>>>><>>>>>:
T � eT if

��0�(cf�cd)
�h
�+h

+�
6 T � eT

��0�(cf�cd)
�h
�+h

+�
if T � eT 6 ��0�(cf�cd)

�h
�+h

+�
6 T

T if
��0�(cf�cd)

�h
�+h

+�
> T

Now, we are ready to show Proposition 2 is valid.

1). Since �0 > T , Q2 + eT 6 �0 holds for any Q2 6 T � eT . Thus V II
�
Q1; Q2j �0; l; eT� is

concave in Q2. For any Q1, V II
�
Q1; Q2j �0; l; eT� could be minimized only at the boundary

points of the feasible set OABC. The minimum of V II
�
Q1; Q2j �0; l; eT� could be achieved

only at the four sides of the feasible set OABC illustrated in Figure ??. Since the minimum

of V II
�
Q1; Q2j �0; l; eT� on the four sides could only be achieved at one of the four points

QOA; QCO; QBC and QAB, respectively, part 1) follows.

2). Since �0 < T , there may exist Q2 such that Q2+ eT > �0 holds. Thus V 2II �Q2j �0; l; eT�
is concave-convex in Q2. For any Q1, V II

�
Q1; Q2j �0; l; eT� could be minimized only at the

boundary points of the feasible set OABC or Q2 (�0). If Q
UC b=(Q1 (�0) ; Q2 (�0)) falls outside

the feasible set OABC, then any interior point is dominated by some point on the four sides of

the feasible region: OA; CO; BC and AB; therefore, the minimum of V II
�
Q1; Q2j �0; l; eT� could

only be achieved at one of the four points QOA; QCO; QBC and QAB. If QUC b=(Q1 (�0) ; Q2 (�0))
is an interior point of the feasible set OABC, then any interior point is dominated by either

QUC or some point on the four sides. Thus, part 2) follows.
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Modeling parameters and their values for all the numerical examples
Figure Modeling parameters values
1. � = 1:8; h = :3; T = 14; � � Gamma (�; �) ; � = 5; � = 3; cf � cd = 2
2.a, 2.b � = 1:8; h = :3; T = 14; � � Gamma (�; �) ; � = 5; � = 3
3. � = 1:8; h = :3; T = 14; � � Gamma (�; �) ; � = 5; � = 3 or 5; cf � cd = 2
4.a, 4.b � = 1:8; h = :3; T = 14; � � Gamma (�; �) ; � = 5; � = 3 or 5; cf � cd = 2
6.a, 6.b � = 1:8; h = :3; T = 14; � � Gamma (�; �) ; � = 5; � = 3 or 5; cf � cd = 2; cf � cn = 1:5
7.a, 7.b � = 1:8; h = :3; T = 14; � � Gamma (�; �) ; � = 5; � = 3; cn � cd = 1;lf= 5
8 � = 1:8; T = 14; � � Gamma (�; �) ; � = 5; � = 3; cf = 5; cn = 4; cd = 3


