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A.1. Limited Capacity Case

In this section, we consider the case where the supplier has a capacity of K units that he can

sell throughout N -periods. Let QN correspond to the total production quantity of an N -period

uncapacitated game. For the N -period limited capacity case, when the capacity is “tight,” i.e.,

CS ≤ a
4b , or when the capacity is “abundant,” i.e., CS ≥ QN , the results are straightforward and

intuitive. In the first case, as the capacity is tight, the supplier does not change his price through

the game, so the N -period game is equivalent to a single period game. When CS ≥ QN , the

problem is equivalent to an unlimited capacity game (Proposition 1). What happens in between

these extremes is more interesting. Our main result is as follows.

Proposition A.1 The SPNE for the N -period capacitated model for CS < QN is as follows: Let

N∗ ∈ {1, 2, · · · , N} be such that QN∗−1 < CS ≤ QN∗. For the first N −N∗ periods, the supplier and

the buyer do not play the game. In the last N∗-periods, they play the following N∗-period game.

For i = 1, 2, · · · , N∗ − 2:

qN−N∗+1 = CS −
N∑

j=N−N∗+2

qj , qN = a
2b − CS , qN−i =

(
2i

2i + 1

)
qN−i+1,

wN−N∗+1 =
N∗−1∏
i=1

(
2i + 1

2i

)
wN , wN = 2

(
a
2 − bCS

)
, wN−i =

(
2i + 1

2i

)
wN−i+1.
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Proof: When CS < QN , let N∗ be the maximum N such that QN∗−1 < CS ≤ QN∗ . Then for

the N∗-period game, by backward induction we can show the strategy given in the proposition is

optimal. The proof directly follows from the proof of Proposition 1 after observing that qN−N∗+1 =

CS −∑N
j=N−N∗+2 qj , and wN = 2

(
a
2 − bCS

)
.

As the total production quantity is equal to the available capacity, it is not possible to increase

the total supply chain profit anymore. If we increase the number of periods, the best the supplier

can do is to set capacity prices that are on average higher. However, as the total supply chain

profit is constant, the buyer will be worse off in this case; hence she will not cooperate with the

supplier forcing the play of an N∗-period game by not procuring in the other periods.

When CS < QN , depending on the capacity, the supplier and the buyer play an N∗-period

game (N∗ ≤ N), the supplier sells all the capacity, and the supply chain is coordinated. Hence,

contrary to the unlimited capacity case, increasing the number of trading periods beyond N∗ does

not increase the profits of either player. The total profits for the buyer and the supplier can be

maximized in a finite number of trading periods, N∗, which depends on the capacity of the supplier.

A.2. Information Asymmetry

In practice, the buyer is closer to the end-consumer market and may have more information about

the demand compared to the supplier. In this section, we consider information asymmetry between

the supplier and the buyer regarding the market potential. According to the supplier, the market

potential can either be “high,” ah, with a probability of α, or “low,” al, with a probability of 1−α.

The buyer, on the other hand, knows the exact value of the market potential. For simplicity, we

assume that bi = 1, i = l, h.

If the players interact only once (N = 1), the outcome of this asymmetric information game is

as follows:

Proposition A.2 The unique pure-strategy perfect Bayesian equilibrium of the single-period game

with asymmetric market-potential information is as follows:

w =

⎧⎪⎨
⎪⎩

ā
2

al
ah

≥
√

α
1+

√
α

ah
2

al
ah

≤
√

α
1+

√
α

where ā = αah + (1 − α)al. The buyer procures qi =
(ai−w

2

)+, i = l, h, units of capacity.

Proof: The buyer’s best-response function is qi =
(ai−w

2

)+
. In the equilibrium, w < ah. Hence,

there are two cases to analyze: (1) w < al and (2) al ≤ w < ah. If we solve for the supplier’s
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optimization problem in the first case, we achieve w = ā/2. As w < al in this case, the parameters

should satisfy the following condition: al/ah ≥ α/(1 + α). Similarly, the analysis of the second

case provides the solution w = ah/2. For this case to be feasible, the parameters should satisfy the

following condition: al/ah ≤ 1/2. The supplier’s respective (expected) profits are ā2/8 and αa2
h/8

under these two options. We see that the supplier prefers the former to the latter if:

ā2

8
≥ αa2

h

8
⇒ ā ≥ √

αah ⇒ al

ah
≥

√
α

1 +
√

α
,

which satisfies α/(1 + α) ≤ √
α/(1 +

√
α) ≤ 1/2.

If the supplier knew the market potential, he would set wi = ai
2 , i = l, h. When there is

information asymmetry, the relative values of al and ah determine the equilibrium. When al and

ah are close to each other, the supplier sets the price based on the expected value ā. However, when

ah is considerably higher than al, the supplier sets the prices based on ah and ignores the “low”

state altogether. It is easy to see that the buyer has an incentive to reveal the market potential

(her type) in the “low” state, but not in the “high” state.

Proposition A.3 summarizes the outcome of this asymmetric information game if the players

interact twice (N = 2):

Proposition A.3 A pure-strategy perfect Bayesian equilibrium of the two-period game with asym-

metric market-potential information is as follows:

w1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> ah (I)
7ā
16 + al

8 (II)
(ah−al)α(2−α)

2(1−α) (III)

The supplier’s posterior belief ᾱ is equal to 1 if q1 > q1l and to α otherwise, where q1l =
(

2al−ā
6 − 2w1

3

)+
.

By choosing (I), the supplier effectively eliminates the first period. He can choose (II) and

(III) if the conditions in equations (A.1) and (A.2) (see the proof of the proposition), respectively,

are satisfied. The supplier compares (I), (II), and (III) and chooses the one with highest expected

profits. Let ¯̄a = ᾱah + (1 − ᾱ)al. We have, q2i =
(ai−w2

2 − q1
)+ and

w2(q1) =

⎧⎪⎨
⎪⎩
(

¯̄a
2 − q1

)+ (
¯̄a
2 − q1

)2 ≥ ᾱ
(ah

2 − q1
)2

(ah
2 − q1

)+ (
¯̄a
2 − q1

)2 ≤ ᾱ
(ah

2 − q1
)2

Proof: We solve for the perfect Bayesian equilibrium in this extensive-form game of incomplete

information in pure strategies. We say that the buyer is of type i if the demand state is i, i = l, h.
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Given her first-period procurement quantity (q1), the buyer’s second-period procurement quantity

when she is of type i is q2i =
(ai−w2

2 − q1
)+, i = l, h. Given his posterior belief that the buyer is of

“high” type (ᾱ) and q2i, the supplier’s second-period problem can be formulated as follows:

max
w2≥0

ᾱw2

(
ah − w2

2
− q1

)+

+ (1 − ᾱ)w2

(
al − w2

2
− q1

)+

,

which leads to the following outcome:

w2(q1, ᾱ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¯̄a
2 − q1

(
¯̄a
2 − q1

)2
> ᾱ

(ah
2 − q1

)2
ah
2 − q1

(
¯̄a
2 − q1

)2
< ᾱ

(ah
2 − q1

)2
either ¯̄a

2 − q1 or ah
2 − q1

(
¯̄a
2 − q1

)2
= ᾱ

(ah
2 − q1

)2
where ¯̄a = ᾱah + (1 − ᾱ)al.

“Full Revelation”: In order to solve for the first-period outcome, let us first consider the

possibility of “full revelation,” i.e., the buyer of type i is willing to reveal her type to the supplier.

In this case q1h �= q1l and the supplier’s posterior belief can be chosen as follows:

ᾱ(q1) =

⎧⎪⎨
⎪⎩

1 q1 > q1l

0 q1 ≤ q1l.

Hence, the buyer’s and the supplier’s second period best-response functions are q2i =
(ai−w2

2 − q1i
)+

and w2i =
(ai

2 − q1i
)+. Assuming q1i ≤ ai

2 , the type i buyer’s first-period problem can be formulated

as follows:

max
0≤q1i≤ai

2

(
3ai

4
− q1i

2

)(
ai

4
+

q1i

2

)
− w1q1i − 1

2

(
ai

2
− q1i

)2

.

Using the first-order condition (FOC), we get q1i = ai
2 − 2w1

3 . The FOC satisfies the bounds when

w1 ≤ 3al
4 . However, in this case the second-period price is not type dependent, i.e., w2i = 2w1

3 .

Therefore, there is a huge disincentive for the “high” type to reveal her type to the supplier, since

the second-period price is lower. Hence, the supplier cannot set a price such that w1 ≤ 3al
4 that

leads to “full revelation.”

If the “low” type buyer would rather not procure any quantity in the first period (i.e., w1 ≥ 3al
4 ),

we can formulate the supplier’s problem as follows:

max
3al
4

≤w1≤ 3ah
4

α

(
w1

(
ah

2
− 2w1

3

)
+

2w2
1

9

)
+ (1 − α)

(
a2

l

8

)
.

Using FOC, we get

w1 =
9ah

16
.
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The upper bound is satisfied. The lower bound is satisfied when al
ah

≤ 3
4 . Next, we need to check

the incentive compatibility constraint of the “high” type:

(ah − (q1h + q2h))(q1h + q2h) − w1q1h − w2hq2h︸ ︷︷ ︸
19a2

h
256

≥ (ah − q̂2h)q̂2h − w2lq̂2h︸ ︷︷ ︸
(2ah−al)

2

16

,

where q2h is the quantity that the “high” type buyer procures when the price is set for her own

type and q̂2h is the quantity that she procures when the price is set for the “low” type.

When al
ah

≥ 8−√
19

4 , the incentive compatibility constraint is satisfied. However, as al
ah

≤ 3
4 ,

w1 = 9ah
16 cannot satisfy both the incentive compatibility constraint and the lower bound at the

same time. Therefore, the “high” type buyer will not be willing to reveal her type truthfully unless

the supplier decreases the first-period price considerably to make her indifferent between single

period and two-period models:

−w1

(
ah

2
− 2w1

3

)
− 2w2

1

9
+
(

ah

2
− w1

3

)(
ah

2
+

w1

3

)
− (2ah − al)2

16
= 0,

from which we get:

w1 =
3ah

4
−

√
3

4

√
(ah − al)(3ah − al).

However, in this case w1 ≤ 3al
4 , hence even the low type has an incentive to buy capacity in the first

period. It is straightforward from the above argument that w1 = 3al
4 will not satisfy the incentive

compatibility constraint. Hence, “full revelation” is not possible for the N = 2 game.

“No Revelation”: It is also possible to target a “no revelation” equilibrium, i.e., for both types

the buyer procures the same quantity in the first period. As the “low” type does not have an

incentive to buy the “high” type’s quantity, this means that in this case the “high” type will buy

the “low” type’s quantity. Therefore, the supplier’s posterior belief can be chosen as follows:

ᾱ(q1) =

⎧⎪⎨
⎪⎩

1 q1 > q1l

α q1 ≤ q1l.

First, let us assume
(

ā
2 − q1

)2
< ᾱ

(ah
2 − q1

)2. Then, in the second period the supplier does not

serve the “low” type buyer. It is easy to see that the supplier needs to quote a very low price in

the first period in order to convince the “low” type buyer to procure. However, this solution will

be dominated by N = 1.

Assuming
(

ā
2 − q1

)2
> ᾱ

(ah
2 − q1

)2, we can formulate the “low” type buyer’s first-period prob-

lem as follows:

max
q1l≥0

(
2al − ā + 2q1l

4

)(
2al + ā − 2q1l

4

)
− w1q1l −

(
ā

2
− q1l

)(
2al − ā − 2q1l

4

)
.
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Using FOC, we get q1l(w1) = 2al+ā
6 − 2w1

3 . The FOC satisfies the non-negativity constraint when

w1 ≤ 2al+ā
4 . Furthermore, the non-negativity condition of the second-period price and quantities

are also satisfied. Note that we still have to verify that
(

ā
2 − q1l

)2
> ᾱ

(ah
2 − q1l

)2. Assuming this

is the case, we can now formulate the supplier’s problem:

max
0≤w1≤ 2al+ā

4

w1

(
2al + ā

6
− 2w1

3

)
+
(

1
2

)(
ā − al + 2w1

3

)2

.

Using FOC, we get

w∗
1 =

7ā

16
+

al

8
.

First let us verify that the “high” type buyer’s incentive-compatibility constraint is not violated at

w∗
1:

−w∗
1q1l(w∗

1) −
(

ā

2
− q1l(w∗

1)
)(

2ah − ā

4
− q1l(w∗

1)
2

)
+
(

2ah + ā

4
− q1l(w∗

1)
2

)(
2ah − ā

4
+

q1l(w∗
1)

2

)
≥

−w1q1h(w∗
1) −

(
ah

2
− q1h(w∗

1)
)(

ah

4
− q1h(w∗

1)
2

)
+
(

3ah

4
− q1h(w∗

1)
2

)(
ah

4
+

q1h(w∗
1)

2

)
,

where q1h(w1) = ah
2 − 2w1

3 . When 9( al
ah

−α) + (1− al
ah

)α2 ≥ 0, the “high” type buyer does not have

an incentive to reveal her type, hence w∗
1 is incentive compatible. When w∗

1 is incentive compatible,

the upper bound is automatically satisfied, i.e., ā ≤ 2al. Therefore, when

(
ā

2
− q1l(w∗

1)
)2

> α

(
ah

2
− q1l(w∗

1)
)2

and 9
(

al

ah
− α

)
+
(

1 − al

ah

)
α2 ≥ 0, (A.1)

w∗
1 is a candidate for the equilibrium. Figure A.1 shows that such parameters do exist (the feasible

region has a value of 1).

Figure A.1: Feasibility conditions for the “no revelation” equilibrium.
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When 9( al
ah

− α) + (1 − al
ah

)α2 < 0, the supplier needs to increase the first-period price in order

to satisfy the incentive compatibility constraint of the buyer and the resulting w1 is:

wIN
1 =

(ah − al)α(2 − α)
2(1 − α)

.

When al
ah

≥ α(3−α)
3−α2 , wIN

1 satisfies the upper and lower bounds, as well as the nonnegativity con-

straints of second-period price and quantities. Therefore, when(
ā

2
− q1l(wIN

1 )
)2

> α

(
ah

2
− q1l(wIN

1 )
)2

, 9
(

al

ah
− α

)
+
(

1 − al

ah

)
α2 < 0,

al

ah
≥ α(3 − α)

3 − α2
, (A.2)

wIN
1 is a candidate for the equilibrium.

To summarize, the supplier can either quote w∗
1 (if conditions in (A.1) are satisfied) or wIN

1 (if

conditions in (A.2) are satisfied) to induce a “no revelation” equilibrium. Another alternative is

to quote a very high price in the first period, which leads to a single-period solution. The supplier

compares his profits under these three cases and chooses the one that maximizes his profit.

With the goal of understanding the impact of multiple trading periods in an asymmetric infor-

mation setting, consider Figure A.2. Based on the results of Proposition A.3, for different values

of al and α, Figure A.2 plots the increase in the supplier’s expected profits due to the additional

period.

Figure A.2: The increase in the supplier’s expected profits due to the additional period (ah = 10).
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When al is relatively low compared to ah, the supplier does not benefit from the additional

period. For higher values of al, there are values of α for which dynamic procurement improves

the system performance. Hence, under asymmetric information the additional trading period may

continue to enable dynamic procurement depending on the relative values of al and ah. However,

our main result may also be reversed under asymmetric information.
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