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Appendix: Proofs 

Proof of Theorem 1: 

By induction:  Equation (5) establishes the base of the induction for n=0.  Note that (4) is 
satisfied by the construction of A.  Suppose that the hypothesis is true for all values less than k.  
From (7) 
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This is a linear ordinary differential equation, so we need only verify that the solution holds: 
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which establishes the hypothesis at k+1 as desired. 

Given the formula for vn, the price posted satisfies 
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Proof of Theorem 2: 

Define 

ε
−ε

β
=γ

1

n

n
n .  The theorem states that γn converges to 1.  Using (8), 
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Claim 1: γn≤1.   
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with the inequality implied by claim 1. 

Equality in this expression defines a new sequence ηn which is a lower bound for γn. 
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It is readily verified by induction that 

ε
−ε

=

ε
−ε

∑ ⎟
⎠
⎞

⎜
⎝
⎛

ε
−ε+η⎟

⎠
⎞

⎜
⎝
⎛=η

1

1
0

1
111

n

j
n n

j
jn

  1
1111
1

0

1

1

1
0

1

=
ε
−ε→⎟

⎠
⎞

⎜
⎝
⎛

ε
−ε+η⎟

⎠
⎞

⎜
⎝
⎛= ∫∑ ε

−ε
−

=

ε
−ε

dxx
n
j

nn

n

j

. 

Thus, γn is bounded between ηn and 1 and thus converges to 1.   
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The evolution of the probability that there are n items available at time t is governed by the 
differential equation 
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because qn increases when a sale is made starting with n+1 items, and is decreased when a sale is 
made when n items remain.  If the firm begins with N units at time 0, then q(N,0)=1 and q(n,0)=0 
for all n<N. 

Using the approximation, this becomes 
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Q.E.D.  

Proof of Theorem 4:  

The expected value of the amount of remaining capacity, n is approximately 
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The first inequality follows from n≤N and the fact that κ was shown to be decreasing; the second 
inequality from the hypothesis of the theorem that N≤A(0), and the third inequality by noting that 
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