Appendix: Proofs

Proof of Theorem 1:
By induction: Equation (5) establishes the base of the induction for $n=0$. Note that (4) is satisfied by the construction of A. Suppose that the hypothesis is true for all values less than k. From (7)

$$
v_{k+1}^{\prime}(t)=-a(t) \frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}}\left(v_{k+1}(t)-v_{k}(t)\right)^{1-\varepsilon}=-a(t) \frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}}\left(v_{k+1}(t)-\beta_{k}(A(t))^{1 / \varepsilon}\right)^{1-\varepsilon}
$$

This is a linear ordinary differential equation, so we need only verify that the solution holds:

$$
\begin{aligned}
& v_{k+1}^{\prime}(t)+a(t) \frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}}\left(v_{k+1}(t)-\beta_{k}(A(t))^{1 / \varepsilon}\right)^{1-\varepsilon} \\
& \quad=\beta_{k+1} \frac{1}{\varepsilon}(A(t))^{1 / \varepsilon^{-1}} A^{\prime}(t)+a(t) \frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}}\left(\beta_{k+1}(A(t))^{1 / \varepsilon}-\beta_{k}(A(t))^{1 / \varepsilon}\right)^{1-\varepsilon} \\
& \quad=-\beta_{k+1} \frac{1}{\varepsilon}(A(t))^{\frac{1-\varepsilon}{\varepsilon}} a(t)+a(t) \frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}}\left(\beta_{k+1}-\beta_{k}\right)^{1-\varepsilon}(A(t))^{\frac{1-\varepsilon}{\varepsilon}} \\
& \quad=(A(t))^{\frac{1-\varepsilon}{\varepsilon}} a(t)\left(-\beta_{k+1} \frac{1}{\varepsilon}+\frac{(\varepsilon-1)^{\varepsilon-1}}{\varepsilon^{\varepsilon}}\left(\beta_{k+1}-\beta_{k}\right)^{1-\varepsilon}\right)=0,
\end{aligned}
$$

which establishes the hypothesis at $k+1$ as desired.
Given the formula for v_{n}, the price posted satisfies
$p_{n}(t)=\frac{\varepsilon}{\varepsilon-1}\left(v_{n}(t)-v_{n-1}(t)\right)=\frac{\varepsilon}{\varepsilon-1} A(t)^{1 / \varepsilon}\left(\beta_{n}-\beta_{n-1}\right)=\beta_{n}^{-1 / \varepsilon-1} A(t)^{1 / \varepsilon}$
since $\beta_{n}-\beta_{n-1}=\frac{\varepsilon-1}{\varepsilon} \beta_{n}^{-1 / \varepsilon-1}$.
Q.E.D.

Proof of Theorem 2:
Define $\gamma_{n}=\frac{\beta_{n}}{n^{\frac{\varepsilon-1}{\varepsilon}}}$. The theorem states that γ_{n} converges to 1 . Using (8),
we have

$$
\gamma_{n} n^{\frac{\varepsilon-1}{\varepsilon}}\left(\gamma_{n} n^{\frac{\varepsilon-1}{\varepsilon}}-\gamma_{n-1}(n-1)^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\varepsilon-1}=\left(\frac{\varepsilon-1}{\varepsilon}\right)^{\varepsilon-1}
$$

or

$$
\gamma_{n}^{\frac{1}{\varepsilon-1}} n^{\frac{1}{\varepsilon}}\left(\gamma_{n} n^{\frac{\varepsilon-1}{\varepsilon}}-\gamma_{n-1}(n-1)^{\frac{\varepsilon-1}{\varepsilon}}\right)=\frac{\varepsilon-1}{\varepsilon}
$$

or

$$
\gamma_{n}^{\frac{1}{\varepsilon-1}} n\left(\gamma_{n}-\gamma_{n-1}\left(\frac{n-1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)=\frac{\varepsilon-1}{\varepsilon}
$$

Claim 1: $\gamma_{n} \leq 1$.
Proof of Claim 1: Note that $\gamma_{1}=\beta_{1}=\left(\frac{\varepsilon-1}{\varepsilon}\right)^{\frac{\varepsilon-1}{\varepsilon}}<1$. Suppose, by way of contradiction, that γ_{m} is the first instance of $\gamma_{m}>1$. Then $\gamma_{m}>1 \geq \gamma_{m-1}$. Thus

$$
\begin{aligned}
& \frac{\varepsilon-1}{\varepsilon}=\gamma_{m}^{\frac{1}{\varepsilon-1}} m\left(\gamma_{m}-\gamma_{m-1}\left(\frac{m-1}{m}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right) \geq \gamma_{m}^{\frac{1}{\varepsilon-1}} m\left(\gamma_{m}-\gamma_{m}\left(\frac{m-1}{m}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right) \\
& =\gamma_{m}^{\frac{\varepsilon}{\varepsilon-1}} m\left(1-\left(\frac{m-1}{m}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right) \geq \gamma_{m}^{\frac{\varepsilon}{\varepsilon-1}} \frac{\varepsilon-1}{\varepsilon}
\end{aligned}
$$

since $m\left(1-\left(\frac{m-1}{m}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)$ is a decreasing sequence that converges to $\frac{\varepsilon-1}{\varepsilon}$. This verifies claim 1.

Now rewrite

$$
\gamma_{n}^{\frac{1}{\varepsilon-1}} n\left(\gamma_{n}-\gamma_{n-1}\left(\frac{n-1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)=\frac{\varepsilon-1}{\varepsilon}
$$

to obtain

$$
\gamma_{n}=\frac{\varepsilon-1}{n \varepsilon} \gamma_{n}^{\frac{-1}{\varepsilon-1}}+\gamma_{n-1}\left(\frac{n-1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}} \geq \frac{\varepsilon-1}{n \varepsilon}+\gamma_{n-1}\left(\frac{n-1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}},
$$

with the inequality implied by claim 1 .
Equality in this expression defines a new sequence η_{n} which is a lower bound for γ_{n}.

$$
\eta_{n}=\frac{\varepsilon-1}{n \varepsilon}+\eta_{n-1}\left(\frac{n-1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}}
$$

It is readily verified by induction that

$$
\begin{aligned}
& \eta_{n}=\left(\frac{1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}} \eta_{\mathrm{O}}+\frac{\varepsilon-1}{\varepsilon} \sum_{j=1}^{n} \frac{1}{j}\left(\frac{j}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}} \\
&=\left(\frac{1}{n}\right)^{\frac{\varepsilon-1}{\varepsilon}} \eta_{\mathrm{O}}+\frac{\varepsilon-1}{\varepsilon} \frac{1}{n} \sum_{j=1}^{n}\left(\frac{j}{n}\right)^{\frac{-1}{\varepsilon}} \rightarrow \frac{\varepsilon-1}{\varepsilon} \int_{\mathrm{o}}^{1} x^{-1 / \varepsilon} d x=1 .
\end{aligned}
$$

Thus, γ_{n} is bounded between η_{n} and 1 and thus converges to 1 .
From (9): $p_{n}(t)=\beta_{n}^{\frac{-1}{\varepsilon-1}}(A(t))^{1 / \varepsilon} \approx\left(\frac{A(t)}{n}\right)^{1 / \varepsilon}$.

The evolution of the probability that there are n items available at time t is governed by the differential equation

$$
\begin{aligned}
q_{n}^{\prime}(t) & =\lambda\left(p_{n+1}(t), t\right) q_{n+1}(t)-\lambda\left(p_{n}(t), t\right) q_{n}(t) \\
& =a(t)\left(p_{n+1}(t)\right)^{-\varepsilon} q_{n+1}(t)-a(t)\left(p_{n}(t)\right)^{-\varepsilon} q_{n}(t) \\
& =a(t)\left(\beta_{n+1}^{\varepsilon / \varepsilon} A(t)^{-1} q_{n+1}(t)-\beta_{n}^{\varepsilon / \varepsilon-1} A(t)^{-1} q_{n}(t)\right) \\
& =\frac{a(t)}{A(t)}\left(\beta_{n+1}^{\varepsilon / \varepsilon-1} q_{n+1}(t)-\beta_{n}^{\varepsilon / \varepsilon-1} q_{n}(t)\right)
\end{aligned}
$$

because q_{n} increases when a sale is made starting with $n+1$ items, and is decreased when a sale is made when n items remain. If the firm begins with N units at time 0 , then $q(N, 0)=1$ and $q(n, 0)=0$ for all $n<N$.

Using the approximation, this becomes

$$
q_{n}^{\prime}(t) \approx \frac{a(t)}{A(t)}\left((n+1) q_{n+1}(t)-n q_{n}(t)\right)
$$

which has the elegant binomial solution:

$$
q_{n}(t) \approx\binom{N}{n}\left(\frac{A(t)}{A(\mathrm{o})}\right)^{n}\left(1-\frac{A(t)}{A(\mathrm{o})}\right)^{N-n}
$$

Q.E.D.

Proof of Theorem 4:
The expected value of the amount of remaining capacity, n is approximately $n \approx \frac{N A(t)}{A(o)}$.
Inequality (17) is equivalent to this holding for all t, but it is more convenient to express it in terms of n, with $A(t) \approx \frac{n A(0)}{N}$. Then (17) can be expressed as $\quad \frac{n-1}{n}\left(1+\frac{N}{\varepsilon n A(0)}\right)^{\varepsilon} \leq 1$.

Let $\kappa(x)=(1-x)\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon} ;$ It is sufficient to prove that $\kappa(1 / n) \leq 1$ for all n in $[1, N]$.

$$
\begin{aligned}
\kappa^{\prime}(x)= & -\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon}+(1-x)\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon-1} \frac{N}{A(0)} \\
& =\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon-1}\left[-\left(1+\frac{N}{\varepsilon A(0)} x\right)+(1-x) \frac{N}{A(0)}\right] \\
& =\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon-1}\left[\frac{N}{A(0)}-1-x \frac{N}{A(0)}\left(1+\frac{1}{\varepsilon}\right)\right] \\
& =\frac{1}{A(0)}\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon-1}\left[N-A(0)-N x\left(1+\frac{1}{\varepsilon}\right)\right] \\
& \leq \frac{1}{A(0)}\left(1+\frac{N}{\varepsilon A(0)} x\right)^{\varepsilon-1}\left[N-A(0)-\left(1+\frac{1}{\varepsilon}\right)\right] \leq 0
\end{aligned}
$$

Thus, $\kappa(1 / n) \leq \kappa(1 / N)=(1-1 / N)\left(1+\frac{1}{\varepsilon A(0)}\right)^{\varepsilon} \leq(1-1 / A(0))\left(1+\frac{1}{\varepsilon A(0)}\right)^{\varepsilon} \leq 1$.
The first inequality follows from $n \leq N$ and the fact that κ was shown to be decreasing; the second inequality from the hypothesis of the theorem that $N \leq A(0)$, and the third inequality by noting that $(1-z)\left(1+\frac{z}{\varepsilon}\right)^{\varepsilon}$ is a decreasing function of z, and thus maximized at $z=0$, so that $(1-z)\left(1+\frac{z}{\varepsilon}\right)^{\varepsilon} \leq 1$.
Q.E.D.

