
Appendix A: Proofs

Proof of Proposition 1: If A and B are compatible, network benefits apply regardless of which

technology consumers adopt. Consumers will adopt one of the two since γA
i , γ̄B

i ≥ 0, i = 1, 2. To

capture segment i, firm A can charge a maximum price of pA
i = γA

i − γ̄B
i , leading to profit (γA

i −
γ̄B

i )x − CA(γA
i ), which is maximized at γA

i = γ∗. The corresponding profit is non-negative if and

only if γ̄B
i ≤ γ∗x − CA(γ∗)

x . Consumer net benefits are γ̄B
i + 2θx regardless of which technology they

adopt, therefore, it is not worthwhile for B to develop a product if φ + αγ̄B
1 x + βγ̄B

2 x + 4θx2 ≤ c̄. This

completes the proof. ¥

Proof of Proposition 2: We first derive the equilibrium pricing and product strategies of firm A

when B is available first and A and B are incompatible. We can then derive the equilibrium adoption

patterns and hence determine when B would develop a product. We then compare the profits of A to

Proposition 1 to obtain the second result of the Proposition. Let ∆i ≡ γA
i − γ̄B

i . Given the feature

benefits of firm A, (γA
1 , γA

2 ), the necessary and sufficient conditions for AA, BB, AB, or BA to be an

equilibrium are

AA : pA
1 ≤ ∆1 + θx and pA

2 ≤ ∆2 + θx, (2)

BB : pA
1 ≥ ∆1 − θx and pA

2 ≥ ∆2 − θx, (3)

AB : pA
1 ≤ ∆1 − θx and pA

2 ≥ ∆2 + θx, (4)

BA : pA
1 ≥ ∆1 + θx and pA

2 ≤ ∆2 − θx. (5)

AA and BB are both equilibria if

∆1 − θx ≤ pA
1 ≤ ∆1 + θx and ∆2 − θx ≤ pA

2 ≤ ∆2 + θx. (6)

If (6) holds, we assume consumers choose the equilibrium with the higher total consumer net benefits,

i.e., they choose AA if

∆1 + ∆2 ≥ pA
1 + pA

2 , (7)

otherwise, they choose BB. Given consumers’ period-2b equilibrium strategies (equations (2)-(7)), we

now derive the period-2a pricing and feature benefit strategies of firm A. We define the following sets
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in (γ̄B
1 , γ̄B

2 ) space:

DAB ≡
{

(γ̄B
1 , γ̄B

2 )
∣∣∣∣γ̄B

1 ≤ γ∗ − θx− CA(γ∗)
x and γ̄B

2 > γ∗ + θx− CA(γ∗)
x

}
,

DBA ≡
{

(γ̄B
1 , γ̄B

2 )
∣∣∣∣γ̄B

1 > γ∗ + θx− CA(γ∗)
x and γ̄B

2 ≤ γ∗ − θx− CA(γ∗)
x

}
,

DBB ≡
{

(γ̄B
1 , γ̄B

2 )
∣∣∣∣γ̄B

1 > γ∗ − θx− CA(γ∗)
x and γ̄B

2 > γ∗ − θx− CA(γ∗)
x

and (γ∗ − γ̄B
1 )x + (γ∗ − γ̄B

2 )x− 2CA(γ∗) < 0
}

, and

DAA ≡ the rest of the first quadrant in (γ̄B
1 , γ̄B

2 ) space.

The sets DAB, DBA DBB, and DAA, correspond to the regions in Figure 2 where AB, BA, BB, and

AA are the equilibrium adoption patterns, respectively.

Lemma 3 When B is available first and A and B are incompatible, the subgame perfect equilibrium

is for consumers to follow strategies (2)-(7) and for firm A to set the following feature benefits and

prices:

• Split market equilibrium: Let TT ′ = AB or BA and segment i 6= j be the segment firm A wins. If

(γ̄B
1 , γ̄B

2 ) ∈ DTT ′, firm A sets its feature benefits at γ̃A
i = γ∗, γ̃A

j = 0, and prices p̃A
i = γ∗−γ̄B

i −θx,

p̃A
j = 0, resulting in adoption pattern TT ′, profit p̃A

i x−CA(γ∗), and consumer net benefits γ̄B
i +2θx

for segment i, and γ̄B
j + θx for segment j.

• Technology B wins: If (γ̄B
1 , γ̄B

2 ) ∈ DBB, for each segment i = 1, 2, firm A sets its feature benefits

at γ̃A
i = 0, and prices p̃A

i = 0, resulting in adoption pattern BB, zero profit, and consumer net

benefits wBB
i = γ̄B

i + 2θx.

• Firm A wins: If (γ̄B
1 , γ̄B

2 ) ∈ DAA, for each segment i = 1, 2, firm A sets its feature benefits at γ̃A
i =

γ∗ and prices p̃A
i = γ∗−γ̄B

i , resulting in adoption pattern AA, profit ΠAA = (p̃A
1 +p̃A

2 )x−2CA(γ∗),

and consumer net benefits wAA
i = γ̄B

i + 2θx.

Proof : We compare the optimal product and pricing strategies of firm A when it wins both segments

and when it wins only one segment, to determine which case applies. Consider the pricing decision

of firm A given the feature benefits, (γA
1 , γA

2 ), and strategies of consumers in period 2b, (2)-(7). The

maximum profit firm A can make from winning both segments is (∆1 +∆2)x−CA(γA
1 )−CA(γA

2 ) (from

(2) and (6)), which is maximized at (γ∗, γ∗). Therefore, firm A’s maximum profit from winning both

segments is ΠAA = (γ∗ − γ̄B
1 + γ∗ − γ̄B

2 )x− 2CA(γ∗).
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Given the feature benefits (γA
1 , γA

2 ), firm A’s maximum profit from winning only segment 1 is

∆1x−θx2−CA(γA
1 )−CA(γA

2 ) (from (4)), which is maximized at (γ∗, 0). Therefore, firm A’s maximum

profit from winning only segment 1 is ΠAB = (γ∗− γ̄B
1 )x− θx2−CA(γ∗). A symmetric analysis shows

that the profit-maximizing feature benefits when firm A wins only segment 2 is (0, γ∗), resulting in

maximum profit of ΠBA = (γ∗ − γ̄B
2 )x− θx2 − CA(γ∗).

It is profit maximizing for A to price to win both segments if and only if ΠAA ≥ max{ΠAB, ΠBA,ΠBB},
which defines DAA. There is a range of prices, {(p̃A

1 , p̃A
2 )|p̃A

1 ∈ [γ∗ − γ̄B
1 − θx, γ∗ − γ̄B

1 + θx], p̃A
2 =

γ∗ − γ̄B
1 + γ∗ − γ̄B

2 − p̃A
1 }, that satisfy (7) and give the maximum ΠAA, however, only p̃A

1 = γ∗ − γ̄B
1

and p̃A
2 = γ∗− γ̄B

2 result in AA being the pareto-optimal period-2b equilibrium. It is profit maximizing

for firm A to price to win only segment 1 if and only if ΠAB ≥ max{ΠAA, ΠBA, ΠBB}. It is profit

maximizing for firm A to price to win only segment 2 if and only if ΠBA ≥ max{ΠAA, ΠAB,ΠBB}.
Now, ΠAB ≥ ΠAA and ΠBA ≥ ΠBB together imply ΠAB ≥ ΠBA. Therefore, ΠAB ≥ max{ΠAA,ΠBB}
defines DAB and ΠBA ≥ max{ΠAA,ΠBB} defines DBA, the two split market equilibria. Under all other

conditions, technology B wins both segments, DBB = (γ̄B
1 , γ̄B

2 )\DAA ∪ DAB ∪ DBA. This completes

the proof. ¥

If (γ̄B
1 , γ̄B

2 ) ∈ DAA∪DBB, consumer net benefits are γ̄B
i +2θx, i = 1, 2, therefore, B enters the market if

and only if φ+αγ̄B
1 x+βγ̄B

2 x+4θx2 ≥ c̄. If (γ̄B
1 , γ̄B

2 ) ∈ DAB∪DBA, consumer net benefits are γ̄B
i +θx and

γ̄B
j +2θx, i = 1, 2, i 6= j, therefore, B enters the market if and only if φ+αγ̄B

1 x+βγ̄B
2 x+(α+2β)θx2 ≥ c̄.

Comparing B’s entry criteria with Proposition 1 shows that B is less likely to develop a product when

A and B are incompatible than when they are compatible. The second part of the Proposition is a

direct result of comparing Lemma 3 and Proposition 1. ¥

Proof of Proposition 3: The four adoption patterns yield the following expressions for the optimal

overall surplus: Y AA = 2γ∗x + 4θx2 − 2CA(γ∗) (CB = 0 to maximize total network value), Y AB =

(γ∗ + γ̄B
2 )x + 2θx2 − CA(γ∗) + φ − c̄, Y BA = (γ̄B

1 + γ∗)x + 2θx2 − CA(γ∗) + φ − c̄, and Y BB =

(γ̄B
1 + γ̄B

2 )x + 4θx2 + φ − c̄. TT ′ is socially optimal if Y TT ′ = max{Y AA, Y AB, Y BA, Y BB}. It is

straightforward to show that AA is socially optimal for a superset of DAA, and BB is socially optimal

for a superset of DBB. Hence, the region of socially optimal compatibility is a superset of DAA ∪DBB,

which completes the proof. ¥

Proof of Lemma 1: We maximize πi by solving the following two maximization problems for all

values of γ̄B
i :
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max
γA

i

(γA
i − γ̄B

i )x + θx2 − CA(γA
i )

s.t. γA
i > γ̄B

i + θx, (8)

max
γA

i

2(γA
i − γ̄B

i )x− CA(γA
i )

s.t. 0 ≤ γA
i ≤ γ̄B

i + θx. (9)

We can easily show that γ∗ solves the unconstrained version of (8), and γ∗∗ the unconstrained version

of (9). Because ∂(CA)2

∂2γA
i

> 0, we know that γ∗ < γ∗∗. If γ̄B
i + θx ≤ γ∗ < γ∗∗, then the maximizing

values of (8) and (9) are γ∗ and γ̄B
i + θx (by concavity of (9)). Comparing the respective profits of

(8) and (9), we obtain (γ∗ − γ̄B
i )x + θx2 − CA(γ∗) ≥ 2θx2 − CA(γ̄B

i + θx) (because γ∗ maximizes

γA
i x − CA(γA

i )). Therefore, the profits in (8) are greater than or equal to those in (9), which proves

the result for γ̄B
i ≤ γ∗ − θx.

If γ∗ < γ̄B
i + θx ≤ γ∗∗, then the maximizing values of (8) and (9) are both γ̄B

i + θx (by concavity

of (8) and 9)). The profits in (8) and (9) are equal: 2θx2−CA(γ̄B
i + θx) = 2θx2−CA(γ̄B

i + θx), which

proves the result for γ∗ < γ̄B
i + θx ≤ γ∗∗.

If γ̄B
i + θx > γ∗∗, then the maximizing values of (8) and (9) are γ̄B

i + θx (by concavity of (8)) and

γ∗∗. Comparing the respective profits in (8) and (9), 2θx2 − CA(γ̄B
i + θx) ≤ 2(γ∗∗ − γ̄B

i )x − CA(γ∗∗)

(because γ∗∗ maximizes 2γA
i x − CA(γA

i )). Therefore the profits in (8) are less than or equal to those

in (9), which gives the results for γ̄B
i > γ∗∗ − θx, and completes the proof. ¥

Lemma 4 Firm A has a first-mover advantage by inducing adoption sequence (12) under the following

conditions:

(i) If (γ̄B
1 , γ̄B

2 ) ∈ EAA and γ̄B
1 ≤ γ(12)

AA , firm A maximizes its profit by setting γ̃A
1 = γ̂A

1 , γ̃A
2 = γ∗,

resulting in profit Π(12)
AA = (γ∗ − γ̄B

2 )x− CA(γ∗) + π̂1.

(ii) If (γ̄B
1 , γ̄B

2 ) ∈ EBB ∩E(12)
BB , firm A maximizes its profit by setting γ̃A

1 = γ̂A
1 , γ̃A

2 = γ∗, resulting in

profit Π(12)
BB = (γ∗ − γ̄B

2 )x− CA(γ∗) + π̂1.

(iii) If (γ̄B
1 , γ̄B

2 ) ∈ EAB ∩E(12)
AB , firm A maximizes its profit by setting γ̃A

1 = γ∗, γ̃A
2 = γ∗, resulting in

profit Π(12)
AB = (γ∗ − γ̄B

2 )x− CA(γ∗) + π̂1.

(iv) If (γ̄B
1 , γ̄B

2 ) ∈ EBA and γ̄B
1 ≤ γ(12)

BA , firm A maximizes its profit by setting γ̃A
1 = γ̂A

1 , γ̃A
2 = γ∗,

resulting in profit Π(12)
BA = (γ∗ − γ̄B

2 )x + θx2 · 1{(γ̄B
1 ,γ̄B

2 )∈DBA} − CA(γ∗) + π̂1,

where γ(12)
AA ≡ min{γ̄B

1 |π̂1− (γ∗− γ̄B
1 )x+CA(γ∗) ≥ 0}, E(12)

BB ≡ {(γ̄B
1 , γ̄B

2 )|γ̄B
1 ≤ γ̂A

1 +θx and π̂1 +(γ∗−
γ̄B

2 )x− CA(γ∗) ≥ 0}, E(12)
AB ≡ {(γ̄B

1 , γ̄B
2 )|(γ∗ − γ̄B

2 )x− CA(γ∗) + π̂1 ≥ (γ∗ − γ̄B
1 )x− CA(γ∗)}, γ(12)

BA ≡
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min{γ̂A
1 +θx, min{γ̄B

1 |π̂1 +θx2 ·1{(γ̄B
1 ,γ̄B

2 )∈DBA} ≥ 0}}, ETT ′ ≡ {(γ̄B
1 , γ̄B

2 )|Γ1 and Γ2}, and Γi represents

the condition γ̄B
i ≤ γ∗ − CA(γ∗)

x if segment i adopts technology A, and γ̄B
i > γ∗ − CA(γ∗)

x if segment i

adopts technology B. The resulting adoption pattern when firm A has a first-mover advantage is AA.

Firm A’s first-mover advantage under sequence (21) is analogously defined by switching subscripts 1

and 2 in (i) -(iv) and subscripts A and B in (iii)-(iv).

Proof of Lemma 4: We compare firm A’s profit when A and B are incompatible, A designs optimally

and prices to induce sequence (12), to its maximum profit when B is available first (when A and B are

compatible). Let ΠTT ′ be firm A’s profit when A and B are compatible and (γ̄B
1 , γ̄B

2 ) ∈ ETT ′ . Consider

the period-2c subgame when only segment 1 has adopted A in period 1, firm A has made product and

pricing decisions (γA
1 , γA

2 ) and (pA
1 (2), pA

2 (2)), and technologies A and B are incompatible.

¿From the payoff matrix in Figure 3(a), we can derive the necessary and sufficient conditions for

each adoption pattern to be an equilibrium. AA and BB are both equilibria if −θx ≤ ∆1 ≤ θx and

∆2 − θx ≤ pA
2 (2) ≤ ∆2 + θx, in which case consumers choose the equilibrium with the higher total

consumer net benefits, i.e., they choose AA if pA
2 (2) ≤ ∆1 + ∆2, and BB otherwise. If firm A prices to

win both segments, then pA
2 (2) ≤ ∆2 + θx (necessary condition for AA) and pA

2 (2) ≤ ∆1 + ∆2 imply

pA
2 (2) =





∆2 + θx, ∆1 ≥ θx

∆1 + ∆2, ∆1 < θx
. (10)

From (13a), to induce segment-1 consumers to adopt in period 1, w
(12)
1 ≥ w

(22)
1 .

Suppose (γ̄B
1 , γ̄B

2 ) ∈ EAA. From Lemma 3, w
(22)
1 = γ̄B

1 + 2θx and from Proposition 1, ΠAA =

(γ∗− γ̄B
1 +γ∗− γ̄B

2 )x−2CA(γ∗). If firm A sets prices in period 2 so the equilibrium is BB, it will make

non-positive profit. If firm A sets prices in period 2 so the equilibrium is AB, w
(12)
1 ≥ w

(22)
1 implies

pA
1 (1) = ∆1−θx, resulting in profit ∆1x−θx2−CA(γA

1 )−CA(γA
2 ) (no profit from segment 2). Profit is

maximized at (γ∗, 0) resulting in Π(12)
AB = (γ∗− γ̄B

1 )x− θx2−CA(γ∗) < ΠAB ≤ ΠAA (from Proposition

1, (γ̄B
1 , γ̄B

2 ) ∈ EAA implies ΠAA ≥ ΠAB). Firm A does not have a first-mover advantage by pricing to

induce adoption pattern AB in the period-2c subgame.

If firm A sets prices in period 2 so the equilibrium is BA, w
(12)
1 ≥ w

(22)
1 implies pA

1 (1) = −θx,

and pA
2 (2) ≤ ∆2 − θx (necessary condition for BA) implies pA

2 (2) = ∆2 − θx, which results in profit

∆2x−2θx2−CA(γA
1 )−CA(γA

2 ). Profit is maximized at (0, γ∗) resulting in Π(12)
BA = (γ∗− γ̄B

2 )x−2θx2−
CA(γ∗) < ΠBA ≤ ΠAA (from Proposition 1, (γ̄B

1 , γ̄B
2 ) ∈ EAA implies ΠAA ≥ ΠBA). Firm A does not

have a first-mover advantage by pricing to induce adoption pattern BA in the period-2c subgame.

If firm A sets prices in period 2 so the equilibrium is AA, w
(12)
1 ≥ w

(22)
1 implies pA

1 (1) = ∆1, and
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(10) defines pA
2 (2), resulting in profit ∆2x − CA(γA

2 ) + π1. Profit is maximized at (γ̂A
1 , γ∗), resulting

in Π(12)
AA = (γ∗ − γ̄B

2 )x − CA(γ∗) + π̂1 ≥ ΠAA if and only if π̂1 − (γ∗ − γ̄B
1 )x + CA(γ∗) ≥ 0, which is

a function of γ̄B
1 only. Since (γ̄B

1 , γ̄B
2 ) ∈ EAA, γ̄B

1 ≤ γ∗ − CA(γ∗)
x ≤ γ̂A

1 − CA(γ∗)
x ≤ γ̂A

1 + θx, satisfying

∆1 ≥ −θx, a necessary condition for the equilibrium to be AA. Therefore, if (γ̄B
1 , γ̄B

2 ) ∈ EAA, firm A

has a first-mover advantage if and only if it prices to induce adoption pattern AA and γ̄B
1 ≤ γ(12)

AA ≡
min{γ̄B

1 |π̂1 − (γ∗ − γ̄B
1 )x + CA(γ∗) ≥ 0}. The optimal feature benefits are (γ̂A

1 , γ∗).

We can similarly find the conditions for first-mover advantage when (γ̄B
1 , γ̄B

2 ) ∈ EBB, EAB, EBA ∩
DBA, and EBA\DBA. The analysis for first-mover advantage under sequence (21) is analogous. ¥

Proof of Lemma 2: We compare firm A’s maximum profit under sequence (11) to its maximum

profit under sequences (12), (21), and (22). If its profit under sequence (11) is less than or equal

to its profit under sequence (22), then from Lemma 4, sequence (12) or (21) dominates (11). The

necessary and sufficient conditions sequences (11), (22), (12), and (21) are:

w
(11)
1 ≥ w

(21)
1 and w

(11)
2 ≥ w

(12)
2 , (11)

w
(22)
1 ≥ w

(12)
2 and w

(22)
2 ≥ w

(21)
2 , (12)

w
(12)
1 ≥ w

(22)
1 and w

(12)
2 ≥ w

(11)
2 , (13)

and w
(21)
1 ≥ w

(11)
1 and w

(21)
2 ≥ w

(22)
2 . (14)

If (11) and (12) hold, then consumers choose sequence (11) if

w
(11)
1 + w

(11)
2 ≥ w

(22)
1 + w

(22)
2 , (15)

otherwise, they choose sequence (22). Consumers will not pay a positive price to adopt A in period 1

if they expect to switch to B in period 2. Firm A will not subsidize consumers to adopt A in period 1 if

they are going to switch to B in period 2, because firm A cannot leverage the network effects to charge

a higher price. Therefore, we need only consider the AA equilibrium in the period-2 subgame, i.e.,

w
(11)
1 = γA

1 + 2θx and w
(11)
2 = γA

1 + 2θx (Figure 3(b)). Since technologies A and B are incompatible,

w
(22)
1 and w

(22)
2 are as given in Lemma 3. Let ΠTT ′ and Π(ij)

TT ′ be firm A’s profits when B is available

first and under sequence (ij), respectively.

Consider first the case when (12) holds, so to induce sequence (11), firm A must price so that

(15) is binding. Suppose (γ̄B
1 , γ̄B

2 ) ∈ DAA. From Lemma 3, w
(22)
1 = γ̄B

1 + 2θx and w
(22)
2 = γ̄B

2 + 2θx.

Equation (15) gives us pA
1 (1) + pA

2 (1) ≤ ∆1 + ∆2. Firm A’s profit is maximized at (γ∗, γ∗), resulting

in profit (γ∗ − γ̄B
1 + γ∗ − γ̄B

2 )x − 2CA(γ∗) = ΠAA. Suppose (γ̄B
1 , γ̄B

2 ) ∈ DBB. From Lemma 3,

w
(22)
1 = γ̄B

1 +2θx and w
(22)
2 = γ̄B

2 +2θx, resulting in profit (γ∗−γ̄B
1 +γ∗−γ̄B

2 )x−2CA(γ∗) = ΠAA ≤ ΠBB
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(from Lemma 3, (γ̄B
1 , γ̄B

2 ) ∈ DBB implies ΠBB ≥ ΠAA). Suppose (γ̄B
1 , γ̄B

2 ) ∈ DAB. From Lemma 3,

w
(22)
1 = γ̄B

1 +2θx and w
(22)
2 = γ̄B

2 +θx. Equation (15) gives us pA
1 (1)+pA

2 (1) ≤ ∆1 +∆2 +θx. Firm A’s

profit is maximized at (γ∗, γ∗), resulting in profit (γ∗ − γ̄B
1 + γ∗ − γ̄B

2 )x + θx2 − 2CA(γ∗) = Π(12)
AB .

Suppose (γ̄B
1 , γ̄B

2 ) ∈ DBA. From Lemma 3, w
(22)
1 = γ̄B

1 + θx and w
(22)
2 = γ̄B

2 + 2θx. Equation (15)

gives us pA
1 (1) + pA

2 (1) ≤ ∆1 + ∆2 + θx. Firm A’s profit is maximized at (γ∗, γ∗), resulting in profit

(γ∗ − γ̄B
1 + γ∗2 − γ̄B

2 )x + θx2 − 2CA(γ∗) = Π(21)
BA .

Suppose (12) does not hold. If w
(12)
1 ≥ w

(22)
1 , then pricing so that w

(11)
1 ≥ w

(21)
1 and w

(11)
2 ≥ w

(12)
2

is sufficient to induce adoption sequence (11). However, w
(12)
1 ≥ w

(22)
1 and w

(11)
2 ≥ w

(12)
2 are exactly

the same conditions for sequence (12). Therefore, the profit under sequence (11) is equivalent to the

profit under sequence (12). The analysis for the case where w
(21)
2 ≥ w

(22)
2 is analogous. ¥

Proof of Proposition 4: The results of this proposition follow directly from Lemmas 4 and 2. We

need only show that F = {EAA ∩ {(γ̄B
1 , γ̄B

2 )|γ̄B
1 ≤ γ(12)

AA or γ̄B
2 ≤ γ(21)

AA }} ∪ {EBB ∩ (E(12)
BB ∪ E(21)

BB )} ∪
{EAB∩(E(12)

AB ∪{(γ̄B
1 , γ̄B

2 )|γ̄B
2 ≤ γ(21)

AB })}∪{EBA∩({(γ̄B
1 , γ̄B

2 )|γ̄B
1 ≤ γ(12)

BA }∪E(21)
BA )} 6= ∅. Note that from

Lemma 1, γ̂A
i ≥ γ∗. Consider the set EAA ∩ {(γ̄B

1 , γ̄B
2 )|γ̄B

1 ≤ γ(12)
AA or γ̄B

2 ≤ γ(21)
AA }. For γ̄B

1 ≤ γ∗ − θx,

π̂1 − (γ∗ − γ̄B
1 )x + CA(γ∗) ≥ 0 and γ(12)

AA = γ̄B
1 . Clearly EAA ∩ {(γ̄B

1 , γ̄B
2 )|γ̄B

1 ≤ γ∗ − θx} 6= ∅, thereby

proving the proposition. We can analogously show that EAA ∩ {(γ̄B
1 , γ̄B

2 )|γ̄B
2 ≤ γ∗ − θx} 6= ∅. ¥

Proof of Proposition 5: This result follows directly from Lemmas 2 and 4. When A has a first-mover

advantage, A wins the entire market. This means that when B enters the market in period 2, it is

merely acting as a credible threat to force A to lower its prices. If φ + w
(12)
1 x + w

(12)
2 x < c̄, then B will

not develop a product at all, in which case A will have a second period monopoly. ¥

Proof of Proposition 6: We first prove that γA
i (weakly) increases in γ̄B

i . From Lemma 1, if

γ̄B
i ≤ γ∗− θx, γ̂A

i = γ∗ which is constant in γ̄B
i . As γ̄B

i increases to the range γ∗− θx ≤ γ̄B
i ≤ γ∗∗− θx,

γ̂A
i = γ̄B

i + θx ≥ γ∗ and increases in γ̄B
i . If γ̄B

i ≥ γ∗∗ − θx, γ̂A
i = γ∗∗ which is constant in γ̄B

i . When

firm A has a first-mover advantage, γ̃A
i = γ∗, which is constant in γ̄B

i , or γ̃A
i = γ̂A

i , which is (weakly)

increasing in γ̄B
i . This completes the proof for the first part of the proposition.

We next prove that γA
i (weakly) increases in θ. Suppose the network effects increase by δ. Then

the profit-maximizing γA
i for profit function πi(γA

i ) is

γ̌A
i =





γ∗, if γ̄B
i ≤ γ∗ − (θ + δ)x

γ̄B
i + (θ + δ)x, if γ∗ − (θ + δ)x < γ̄B

i ≤ γ∗∗ − (θ + δ)x

γ∗∗, if γ̄B
i > γ∗∗ − (θ + δ)x

.

Comparing with γ̂A
i from Lemma 1, if γ̄B

i ≤ γ∗−(θ+δ)x, γ̌A
i = γ̂A

i = γ∗. If γ∗−(θ+δ)x < γ̄B
i ≤ γ∗−θx,
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γ̌A
i = γ̄B

i + (θ + δ)x > γ∗ = γ̂A
i . If γ∗− θx < γ̄B

i ≤ γ∗∗− (θ + δ)x, γ̌A
i = γ̄B

i + (θ + δ)x > γ̄B
i + θx = γ̂A

i .

If γ∗∗ − (θ + δ)x < γ̄B
i ≤ γ∗∗ − θx, γ̌A

i = γ∗∗ > γ̄B
i + θx = γ̂A

i . If γ̄B
i > γ∗∗ − (θ + δ)x, γ̌A

i = γ̂A
i = γ∗∗.

When firm A has a first-mover advantage, γ̃A
i = γ∗, which is constant in θ, or γ̃A

i = γ̌A
i , which is

(weakly) increasing in θ. This completes the proof. ¥

Proof of Proposition 7: From Lemma 4, when firm A has a first-mover advantage, γ̃A
i = γ∗ or γ̃A

i =

γ̂A
i ≥ γ∗ (Lemma 1). When B is available first, γ̃A

i = 0 or γ̃A
i = γ∗. Now, min{γ∗, γ̂A

i } ≥ max{0, γ∗},
which completes the proof. ¥

Proof of Proposition 8: For each (γ̄B
1 , γ̄B

2 ), we compare consumer net benefits under sequences

(11), (12), (21), and (22), given that firm A acts optimally in period 2. If segment 1 adopts B in

period 1, firm A will enter segment 2 in period 2 if and only if it can make non-negative profit, i.e.,

γ̄B
2 ≤ γ∗−θx−CA(γ∗)

x ≡ γ̄, resulting in adoption pattern BA and consumer net benefits w
(12)
1 = γ̄B

1 +θx,

w
(12)
2 = γ̄B

2 +2θx. Similarly, if segment 2 adopts B in period 1, firm A will enter segment 1 in period 2

if and only if γ̄B
1 ≤ γ̄, resulting in adoption pattern AB and consumer net benefits w

(21)
1 = γ̄B

1 + 2θx,

w
(12)
2 = γ̄B

2 + θx. If both segments adopt B in period 1, the resulting adoption pattern is BB and

consumer net benefits are w
(11)
1 = γ̄B

1 + 2θx, w
(11)
2 = γ̄B

2 + 2θx. If neither segment adopts B in period

1, then the competition described in Lemma 3 (when B is available first) is played in period 2.

If (γ̄B
1 , γ̄B

2 ) ∈ DAA and γ̄B
1 ≤ γ̄ and γ̄B

2 > γ̄, sequences (11) and (12) lead to adoption pattern BB

and consumer net benefits w
(tt′)
1 = γ̄B

1 + 2θx, w
(tt′)
2 = γ̄B

2 + 2θx, (tt’) = (11), (12). Sequence (21)

leads to adoption pattern AB and consumer net benefits w
(21)
1 = γ̄B

1 + 2θx, w
(21)
2 = γ̄B

2 + θx. Sequence

(22) leads to adoption pattern AA and consumer net benefits w
(22)
1 = γ̄B

1 + 2θx, w
(22)
2 = γ̄B

2 + 2θx.

Therefore sequences (11), (12), and (22) are equilibrium adoption sequences resulting in adoption

patterns BB, BB, and AA, respectively. We can similarly show that if (γ̄B
1 , γ̄B

2 ) ∈ DAA and γ̄B
1 > γ̄

and γ̄B
2 ≤ γ̄, sequences (11), (21), and (22) are equilibrium adoption sequences resulting in adoption

patterns BB, BB, and AA, respectively.

If (γ̄B
1 , γ̄B

2 ) ∈ DAA and γ̄B
1 ≤ γ̄ and γ̄B

2 ≤ γ̄, sequences (11) and (22) lead to adoption patterns

BB and AA, respectively, and consumer net benefits w
(tt′)
1 = γ̄B

1 + 2θx, w
(tt′)
2 = γ̄B

2 + 2θx, (tt’) =

(11), (22). Sequence (21) leads to adoption pattern AB and consumer net benefits w
(21)
1 = γ̄B

1 +2θx,

w
(21)
2 = γ̄B

2 + θx. Sequence (12) leads to adoption pattern BA and consumer net benefits w
(12)
1 =

γ̄B
1 + θx, w

(12)
2 = γ̄B

2 + 2θx. Therefore, sequences (11) and (22) are equilibrium adoption sequences

resulting in adoption patterns BB and AA, respectively.

If (γ̄B
1 , γ̄B

2 ) ∈ DAA and γ̄B
1 > γ̄ and γ̄B

2 > γ̄, sequences (11), (12), and (21) lead to adoption

pattern BB and consumer net benefits w
(tt′)
1 = γ̄B

1 +2θx, w
(tt′)
2 = γ̄B

2 +2θx, (tt’) = (11), (12), (21).
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Sequence (22) leads to adoption pattern AA and consumer net benefits w
(22)
1 = γ̄B

1 + 2θx, w
(22)
2 =

γ̄B
2 + 2θx. Therefore, all four adoption sequences are equilibria leading to adoption patterns BB and

AA. If (γ̄B
1 , γ̄B

2 ) ∈ DBB, all four adoption sequences are equilibria and lead to adoption pattern BB

and consumer net benefits w
(tt′)
1 = γ̄B

1 + 2θx, w
(tt′)
2 = γ̄B

2 + 2θx, (tt’) = (11), (12), (21), (22).

If (γ̄B
1 , γ̄B

2 ) ∈ DAB, sequences (11) and (12) lead to adoption pattern BB and consumer net

benefits w
(tt′)
1 = γ̄B

1 + 2θx, w
(tt′)
2 = γ̄B

2 + 2θx, (tt’) = (11), (12). Sequences (21) and (22) lead to

adoption pattern AB and consumer net benefits w
(tt′)
1 = γ̄B

1 + 2θx, w
(tt′)
2 = γ̄B

2 + θx, tt′ = (21), (22).

All four adoption sequences are equilibria, but sequences (11) and (12) result in higher total consumer

net benefits and adoption pattern BB, thereby resulting in an increase in market share for B. We can

similarly show that if (γ̄B
1 , γ̄B

2 ) ∈ DBA, the equilibrium adoption sequences are (11) and (21), resulting

in adoption pattern BB, which completes the proof. ¥

Appendix B: Multiple Open Source Development Options

B.1 Example: Discrete Γ

Assume that open source developers, B, can chose from three discrete options: (i) no develop-

ment, (ii) develop feature set (γ̄B
1 , γ̄B

2 ) at cost c̄, or (iii) develop feature set (¯̄γB
1 , ¯̄γB

2 ) at cost ¯̄c:

Γ = {(0, 0), (γ̄B
1 , γ̄B

2 ), (¯̄γB
1 , ¯̄γB

2 )}. Now, instead of the binary decision of whether to develop a prod-

uct or not, B must also decide on the product features if it decides to develop. As before, B maxi-

mizes its intrinsic motivation φ plus the weighted sum of consumer surplus across the two segments,

φ + (αwTT ′
1 + βwTT ′

2 )x− CB.

Suppose the first open source option is such that γ̄B
1 > γ∗+θx− CA(γ∗)

x and γ̄B
2 < γ∗−θx− CA(γ∗)

x ,

so that if A and B are incompatible, the adoption outcome is BA (Figure 2), and consumer net benefits

are wBA
1 = γ̄B

1 +θx and wBA
2 = γ̄B

2 +2θx. Assume that φ+αγ̄B
1 +βγ̄B

2 +(α+2β)θx− c̄ > 0 so that it is

worthwhile for open source developers to develop a product with feature benefits (γ̄B
1 , γ̄B

2 ). Now suppose

there is another open source product option with better product features, ¯̄γB
1 > γ̄B

1 > γ∗+ θx− CA(γ∗)
x

and ¯̄γB
2 > γ∗ + θx − CA(γ∗)

x > γ̄B
2 , which costs ¯̄c to develop. If B develops a product with feature

benefits (¯̄γB
1 , ¯̄γB

2 ), the adoption outcome is BB and consumer net benefits are wBB
1 = γ̄B

1 + 2θx and

wBB
2 = γ̄B

2 + 2θx. Therefore, open source developers would choose to develop (¯̄γB
1 , ¯̄γB

2 ) over (γ̄B
1 , γ̄B

2 )

if and only if α(¯̄γB
1 − γ̄B

1 ) + β(γ̄B
2 − ¯̄γB

2 ) + αθx ≥ ¯̄c − c̄. The first two terms on the left-hand-side are

just the (weighted) increase in standalone value realized by the second option. The third term is the

increase in network benefit as we shift from a split market (BA) to standardization on B. The difference
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in the development cost, ¯̄c− c̄, must be small enough to make the product feature improvements and

increased network benefits worthwhile. Specifically, for low ¯̄c, i.e., ¯̄c ≤ α(¯̄γB
1 −γ̄B

1 )+β(γ̄B
2 −¯̄γB

2 )+αθx+c̄,

product (¯̄γB
1 , ¯̄γB

2 ) is optimal, otherwise, (γ̄B
1 , γ̄B

2 ) is optimal. For every product option that open source

developers have, they make the same tradeoff of potential feature improvements and/or increased

network size vs. cost of implementation.

B.2 Example: Continuous Γ

We show through the following numerical example that our qualitative results remain intact when Γ is

continuous, namely that firm A can have a first-mover advantage (increasing profit and market share)

by staggering the adoption of consumers and improving its standalone (feature) benefits. Let x = 2

and θ = 1, so the network benefit from a user’s own segment is θx = 2, and when both segments are

compatible, 2θx = 4. Let B’s intrinsic motivation incentive be φ = 2
3 . Let α = 1 and β = 1

3 so the open

source developers are more interested in developing software for their own use (α) than as a career-

motivated signalling mechanism (β). Finally, we assume for simplicity that CA(γ) = CB(γ) = γ2.

B Available First Following the reasoning described in Section 5.1.2, B sets optimal standalone

values γ̃B
1 = γ̂ = 1 and γ̃B

2 = ˆ̂γ = 1
3 in period 1a. In period 2a, if firm A enters the market, its optimal

standalone benefits are γ̃A
1 = γ̃A

2 = γ∗ = 1, where γ∗ ≡ {γ|x− ∂CA(γ)
∂γ } as before. Although firm A would

win both segments with this strategy, it’s profit would be (γ̃A
1 −γ̃B

1 +γ̃A
2 −γ̃B

2 )x−CA(γA
1 )−CA(γA

2 ) = −2
3 .

Since firm A cannot profitably enter the market, B wins both segments in period 2b, resulting in

adoption pattern BB, zero profit for firm A, and utility φ+(α(γ̃B
1 +2θx)+β(γ̃B

2 +2θx))x−CB(γ̃B
1 )−

CB(γ̃B
2 ) = 112

9 for B. Note that intrinsic motivation alone would not have been a sufficient incentive

for B to develop a product, i.e., φ < CB(γ̃B
1 ) + CB(γ̃B

2 ). In this case, B’s optimal standalone benefits

need to be sufficiently high compared to its development cost to make entry worthwhile.

B Moves First If both segments adopt A in period 1b (sequence (11)), firm A will not have a

first-mover advantage (the intuition from Lemma 2 applies). If neither segment adopts in period 1b

(sequence (22)), the analysis is very similar to the analysis for when B is available first resulting in B

setting equilibrium feature benefits γ̃B
1 = γ̂ = 1 and γ̃B

2 = ˆ̂γ = 1
3 , winning both segments in period 2c,

making consumer net benefits wBB
1 = γ̂ + 2θx = 5 and wBB

2 = ˆ̂γ + 2θx = 13
3 , and firm A’s profit equal

to zero.

Consider now the case where segment 1 adopts A in period 1b (sequence (12)). Given the feature
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benefits of both products and firm A’s period-2 segment-2 price (there is no segment-1 price since those

consumers have already adopted A), consumers choose to adopt A or B in period 2c to maximize their

net benefits. The necessary and sufficient conditions for each adoption pattern can be derived from the

consumer payoff matrix shown in Figure 3(a). AA and BB are both equilibria if −θx ≤ γA
1 − γB

1 ≤ θx

and γA
2 −γB

2 −θx ≤ pA
2 (2) ≤ γA

2 −γB
2 +θx, in which case we choose the equilibrium with the higher total

consumer net benefits, i.e., the equilibrium is AA if pA
2 (2) ≤ γA

1 − γB
1 + γA

2 − γB
2 , and BB otherwise.

In period 2b, firm A sets price pA
2 (2) to maximize period 2 profit. Firm A can only make profit

in period 2 if segment 2 adopts its product, i.e., the outcome is adoption pattern AA or BA. Since

segment-1 consumers have to pay to adopt A in period 1b, they will not do so if they plan to switch to B

in period 2. Therefore, BA is not a feasible outcome, leaving AA as the only possible adoption outcome

which could lead to a first-mover advantage for A. Firm A’s second period profit when the adoption

outcome is AA is (γA
2 − γB

2 + min{θx, γA
1 − γB

1 })x,5 resulting consumer net benefits wAA
1 = γA

1 + 2θx

and wAA
2 = γB

2 + 2θx−min{θx, γA
1 − γB

1 }.
In period 2a, anticipating A’s pricing strategy in period 2b, B sets its standalone benefits to maxi-

mize its objective function, φ + (αwAA
1 + βwAA

2 )x−CB(γB
1 )−CB(γB

2 ). If pA
2 (2) = γA

2 − γB
2 + θx, then

maximizing B’s objective function with respect to γB
1 and γB

2 gives optimal feature benefits γ̃B
1 = 0 and

γ̃B
2 = ˆ̂γ = 1

3 . If pA
2 (2) = γA

2 − γB
2 + γA

1 − γB
1 , then B’s optimal feature benefits are γ̃B

1 = γ̃B
2 = ˆ̂γ = 1

3 .

In period 1b, segment 1 consumers will adopt A if and only if they are at least as well off adopting

A now as they would be if they waited for B’s entry in period 2. If segment 1 waits until period

2, the sequence (22) game is played, resulting in adoption pattern BB and consumer net benefits

wBB
1 = γ̂ + 2θx and wBB

2 = ˆ̂γ + 2θx. Since the adoption outcome when firm A has a first-mover

advantage is AA, in period 1a, A must price so that segment-1 consumers are indifferent between net

benefits wAA
1 = γA

1 + 2θx (if they adopt in period 1b) and wBB
1 = γ̂ + 2θx (if they adopt in period

2c). This implies that pA
1 (1) = γA

1 − γ̂. Firm A sets segment-2 price sufficiently high so that segment-2

consumers delay adoption.

In period 1a, firm A must also set its standalone values to maximize its profit over the two periods,

which consists of revenue in the first period from segment 1, plus revenue in the second period from

segment 2, minus the development cost, i.e., firm A’s profit is (γA
1 − γ̂)x + (γA

2 − γB
2 ) + min{θx, γA

1 −
γB

1 })x−CA(γA
1 )−CA(γA

2 ). Maximizing profit with respect to γA
2 gives optimal standalone benefit γ̃A

2 =

γ∗ = {γ|x − ∂CA(γ)
∂γ = 0} = 1. The optimal standalone benefit for segment 1 depends on B’s reaction

5Firm A’s profit is derived from the conditions for an AA equilibrium, i.e., pA
2 (2) ≤ γA

2 − γB
2 + θx and pA

2 (2) ≤
γA
1 − γB

1 + γA
2 − γB

2 .
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function. B wants to maximize consumer net benefits, subject to its own cost constraints. If firm A has

a big enough cost advantage, it could force B out of the segment-2 market altogether. However, for our

example, the best firm A can do is set optimal standalone benefit γ̃A
1 = γ∗∗ = {γ|2x− ∂CA(γ)

∂γ = 0} = 2,

which leads to period-1 price pA
1 (1) = γ̃A

1 −γ̂ = 1. B responds in period 2a by setting γ̃B
1 = γ̃B

2 = ˆ̂γ = 1
3 ,

which leads period-2 price pA
2 (2) = γ̃A

1 − γ̃B
1 + γ̃A

2 − γ̃B
2 = 7

3 .

Firm A’s profit over the two periods is (γ̃A
1 − γ̂)x+(γ̃A

2 − ˆ̂γ)x+(γ̃A
1 − ˆ̂γ)x−CA(γ̃A

1 )−CA(γ̃A
2 ) = 5

3 .

Therefore, by moving first, firm A can increase market share (from zero to winning both segments) and

make positive profit. Note that consumer net benefits when A moves first are wAA
1 = γ̃A

1 +2θx− p̃A
1 = 5

and wAA
2 = γ̃A

2 + 2θx− p̃A
2 = 8

3 . Compared to net benefits wBB
1 = γ̂ + 2θx = 5 and wBB

2 = ˆ̂γ + 2θx =

13
3 when B is available first, the early adopters (segment 1) are equally well off, whereas the late

adopters (segment 2) are exploited and end up worse off. B’s utility when A moves first decreases to

φ+(αwAA
1 +βwAA

2 )x−CB(γ̃B
1 )−CB(γ̃B

2 ) = 22
3 , compared to when B is available first. Note that in this

case, φ > CB(γ̃B
1 ) + CB(γ̃B

2 ), so that B’s intrinsic motivation incentive is higher than its development

cost. Therefore, B would enter the market regardless of the eventual adoption outcome.

Appendix C: Asymmetric Segments

Suppose x1 < x2 = x. Then segment 1 generates less network value, and the standalone benefit it

realizes contributes less to total network value, i.e., γx1 < γx. These changes in value do not change

how the adoption equilibria are derived, however, substitution of x1 < x2 = x in the calculations will

obviously change specific threshold values. One direct impact of a decrease in x1 is that B is less likely

to develop a product, as B’s objective function, φ+αwTT ′
1 x1 +βwTT ′

2 x2− c̄, decreases with decreasing

x1. We can also think of x1 and x2 as weights in B’s objective function. That is, if x1 < x2, the impact

of segment 1’s net benefit on B’s decision to develop a product is less than segment 2’s.

Decreasing x1 can also change consumer behavior through changes in network value. A decrease

in x1 means that segment 2 consumers gain less from being compatible with segment 1. When A

and B are incompatible and consumers have different preferences, they are trading off their desire for

compatibility (to leverage network effects) with their standalone benefit preferences. The decrease in

network value generated by segment 1 makes a split market outcome more likely (or equivalently, if

x = x1 < x2, the increase in x2 would make outcomes AA and BB more likely) because segment 2

consumers will tend to favor adopting their preferred technology. Figure 5 shows how the equilibrium

adoption regions shift when x1 < x2 = x. Notice that the overall shape of the regions remains the
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same as before (indicating the structure of the analysis remains intact), however, the figure is skewed

to reflect the asymmetry in segment sizes and the regions of split market outcome increase (indicated

by the shaded areas).

Figure 5: Adoption equilibria when B is available first and A and B are incompatible. TT ′ refers to
the region where segment 1 adopts T (A or B) and segment 2 adopts T ′ (A or B). The
shaded areas represent areas where the equilibrium outcome shifts to a split market when
x1 decreases. The dotted lines delineate equilibrium adoption regions when x1 = x2 = x.

Finally, asymmetry in segment sizes will change A’s optimal prices and product features. Again, the

analyses for determining A’s prices and product features remain intact, however, the exact values will

change to reflect the change in segment sizes. Specifically, A’s profit function becomes pA
1 x1 + pA

2 x2 −
CA(γA

1 )−CA(γA
2 ). Optimizing the profit function makes A’s optimal feature benefit segment-specific,

i.e., γ∗i = {γA
i |xi − ∂CA(γA

i )

∂γA
i

}. A’s pricing will change to reflect the change in network value that is

generated by segment 1.

Appendix D: Positive Switching Cost

Consider now the case where there is a positive switching cost, s > 0. If firm A moves first, we expect

its first-mover advantage to increase since it may be able to capture some of the switching cost as

profit. Clearly, if A and B are compatible, positive switching costs will still not create a first-mover

advantage: without network effects, it is optimal for consumers to just wait for the product they prefer

and obtain it at the competitive price.

When A and B are incompatible and A moves first, positive switching costs affect the consumer

payoff matrix in the second period when adoption is staggered (Figure 6). When neither segment adopts

in period 1, the results from when B is available first in Lemma 3 hold. From the payoff matrices in

Figure 6, we can determine the equilibrium period-2 consumer strategies for adoption sequences (12)
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Seg i \ Seg j Adopt A Adopt B

Stay with A γA
i + 2θx, γA

i + θx,

γA
j + 2θx− pA

j (2) γ̄B
j + θx

Switch to B γ̄B
i + θx− s, γ̄B

i + 2θx− s,

γA
j + θx− pA

j (2) γ̄B
j + 2θx

Seg 1 \ Seg 2 Stay with A Switch to B

Stay with A γA
1 + 2θx, γA

1 + θx,

γA
2 + 2θx γ̄B

2 + θx− s

Switch to B γ̄B
1 + θx− s, γ̄B

1 + 2θx− s,

γA
2 + θx γ̄B

2 + 2θx− s

(a) Only segment i adopts A in period 1. (b) Both segments adopt A in period 1.

Figure 6: A moves first, period-2c consumer payoff matrix, A and B are incompatible, positive switch-
ing cost (s > 0).

Figure 7: Segment-j, period-2 price as a function of switching cost, given adoption sequence (ij) and
feature benefits (γA

1 , γA
2 ), (γ̄B

1 , γ̄B
2 ).

and (21), given the feature benefits of A and B. Since the results from when B is available first are

the same as when switching costs are zero, the period-1, segment-i price under sequence (ij) is the

same as in Lemma 4, and Lemma 2 holds. The period-2, segment-j price under sequence (ij) is:

pA
j (2) =





γA
j − γ̄B

j + θx, if γ̄B
i ≤ γA

i − θx + s

γA
i − γ̄B

i + γA
j − γ̄B

j , if γ̄B
i > γA

i − θx + s
. (16)

Firm A’s second period price, equation (16), increases with the switching cost (Figure 7). The increase

in the second period price is the crux of firm A’s increased first-mover advantage. If s > 0, A can capture

part of the switching cost as profit from the late adopters. The analysis for first-mover advantage with

positive switching cost is straightforward, however, in the interest of brevity, we will illustrate the

impact of the switching cost by considering the case when switching costs are infinite. That is, when

a consumer never switches once he adopts a technology.

Suppose A moves first. If firm A prices to stagger consumer adoption, it can capture the entire

network value generated by its installed base. From Figure 7, if the switching cost, s, is infinite, the

period-2, segment-j price under sequence (ij) is pA
j (2) = γA

j − γ̄B
j + θx. The corresponding optimal

segment-i feature benefit is γ∗, leading to maximum segment-i profit (γ∗ − γ̄B
i )x + θx2 − CA(γ∗).

Regardless of technology B’s segment-i feature benefit, γ̄B
i , firm A does not have to improve its product
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features above γ∗, the profit-maximizing level, because once segment-i has adopted, consumers cannot

switch. Therefore, switching cost enables firm A to capture network value without improving its product

features.

If B is available first, the period-2c consumer payoff matrices are as shown in Figure 6 except that A

and B are switched. Since open source developers are interested in maximizing consumer surplus, the

nature of their first-mover is not in the form of profit increase, rather, it is an increase in market share.

Firm A’s greed is actually the driver of B’s first-mover advantage. Consumers know that once firm A

enters in period 2, it will extract as much surplus as it can. If consumers adopt A, they end up with

the same net benefit as they would have received by adopting B (firm A’s strategy is to raise prices

just until consumers are indifferent between A and B). Therefore, if B is available first, consumers

who would have adopted A in period 2, are indifferent between adopting B in period 1 and waiting for

A in period 2. This is summarized formally by the following Proposition.

Proposition 8 Suppose consumers cannot switch. If (γ̄B
1 , γ̄B

2 ) ∈ DAB ∪ DBA, technology B gains

market share if it is available first.

When firm A enters in period 2, because there is no switching, it cannot win back the segment that

adopted B in period 1. In the region where there would have been a split market equilibrium (AB or

BA) when B is available first with zero switching cost, segment i = 1 or 2 that would have adopted A,

is indifferent between adopting B early and waiting for A in period 2 (because firm A prices so that

consumers are indifferent between adopting A or being compatible with segment j on B). However,

segment-j consumers, who would have adopted B alone in the absence of switching costs, gain the

network benefit by being compatible with segment i. The increase in total consumer net benefits by

being compatible on technology B shifts the outcome from a split market equilibrium to compatibility

on B, thereby increasing the market share of B. We can directly extend this analysis to finite, positive

switching cost, leading to the same conclusion: B gains market share when switching costs are positive.
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