9 Appendix: Proofs

Proof of Theorem 1. i. According to Lemma 1^{4} in Zhao and Atkins (2007), we need to show $\pi_{i}\left(p_{i}\right)={ }^{\text {def }} \pi_{i}^{d}-\left(w_{i}-\beta_{i}\right)\left(k-m p_{i}\right)+\left(p_{i}-\beta_{i}\right) E\left[\min \left\{D_{i}^{s}, k-m p_{i}\right\}\right]$ to be quasiconcave in p_{i}.

$$
\begin{aligned}
& \frac{d \pi_{i}\left(p_{i}\right)}{d p_{i}}=\frac{d \pi_{i}^{d}}{d p_{i}}+\left(w_{i}-\beta_{i}\right) m+E\left[\min \left\{D_{i}^{s}, k-m p_{i}\right\}\right]-m\left(p_{i}-\beta_{i}\right) \operatorname{Pr}\left(D_{i}^{s}>k-m p_{i}\right) \\
& \frac{d^{2} \pi_{i}\left(p_{i}\right)}{d p_{i}^{2}}=\frac{d^{2} \pi_{i}^{d}}{d p_{i}^{d}}+\operatorname{Pr}\left(D_{i}^{s}>k-m p_{i}\right)\left[-2 m-m^{2}\left(p_{i}-\beta_{i}\right) r_{D_{i}^{s}}\left(k-m p_{i}\right)\right]
\end{aligned}
$$

If $m \geq 0$, then $\pi_{i}\left(p_{i}\right)$ is strictly concave in p_{i}, done.
If $m<0$, then let $n=-m>0$. According to $(A), d^{2} \pi_{i}^{d} / d p_{i}^{2}<0$ and is decreasing in p_{i}. If $\left[2-n\left(p_{i}-\beta_{i}\right) r_{D_{i}^{s}}\left(k+n p_{i}\right)\right]<0$, then $\pi_{i}\left(p_{i}\right)$ is strictly concave in p_{i}, done. Otherwise, by (B), $\left[2-n\left(p_{i}-\beta_{i}\right) r_{D_{i}^{s}}\left(k+n p_{i}\right)\right]$ decreases as p_{i} increases from w_{i} to $p_{i}^{\max }$. Hence $d^{2} \pi_{i}\left(p_{i}\right) / d p_{i}^{2}$ either changes sign at most once from positive to negative or is always negative. Thus, whenever $d \pi_{i}\left(p_{i}\right) / d p_{i}$ turns negative, it remains negative, and $\pi_{i}\left(p_{i}\right)$ is quasiconcave in p_{i}. So, function (1) is quasiconcave in $\left(p_{i}, y_{i}\right)$ and a pure-strategy Nash equilibrium exists.
ii. We first show that maxima of function (1) are interior, then that equations (2)-(3) have a unique solution.

Note that $\lim _{p_{i} \rightarrow p_{i}^{\max }} d \pi_{i} / d p_{i}<0, \lim _{y_{i} \rightarrow y_{i}^{\max }} d \pi_{i} / d y_{i}=-\left(w_{i}-\beta_{i}\right)<0, \lim _{p_{i} \rightarrow w_{i}} d \pi_{i} / d p_{i}>$ 0 , and $\lim _{y_{i} \rightarrow 0} d \pi_{i} / d y_{i}=p_{i}-w_{i}>0$. So boundary solutions are not optimal. Next we show that a unique maximizer solves (2)-(3), satisfying $Q\left(p_{i}\right)={ }^{\text {def }} \partial^{2} \pi_{i}^{d} / \partial p_{i}^{2}+\operatorname{Pr}\left(D_{i}^{s}>\right.$ $\left.y_{i}\right) /\left[\left(p_{i}-\beta_{i}\right) r_{D_{i}^{s}}\left(y_{i}\right)\right]<0$.

[^0]Uniquely solve $y_{i}\left(p_{i}\right)$ from (3) and substitute into (2), resulting in

$$
\begin{equation*}
\partial \pi_{i}^{d} / \partial p_{i}+E\left[\min \left\{D_{i}^{s}, y_{i}\left(p_{i}\right)\right\}\right]=0 \tag{A1}
\end{equation*}
$$

Define $J\left(p_{i}\right)={ }^{\operatorname{def}} d \pi_{i}^{d} / d p_{i}+E\left[\min \left\{D_{i}^{s}, y_{i}\left(p_{i}\right)\right\}\right]$, where $J\left(w_{i}\right)>0$ and $J\left(p_{i}^{\max }\right)<0$, and $d J\left(p_{i}\right) / d p_{i}=Q\left(p_{i}\right)$.

Note that the last term of $Q\left(p_{i}\right)$ decreases with p_{i} and approaches zero by (B). Also, if (A) holds, then $d^{2} J\left(p_{i}\right) / d p_{i}^{2}<0$, so $Q\left(p_{i}\right)$ decreases with p_{i} and approaches $\partial^{2} \pi_{i}^{d} / \partial p_{i}^{2}$ as p_{i} goes to $p_{i}^{\max }$. Thus $J\left(p_{i}\right)$ is strictly concave, starts positive, and finally strictly decreases to negative. So there is a unique solution for equation (A1), at $Q\left(p_{i}\right)<0$.

Proof of Proposition 1. Redefine retailer j 's strategy space as $\widetilde{y}_{j}=-y_{j}$ and $\widetilde{p}_{j}=-p_{j}$. It can be shown that $\partial^{2} \pi_{i} / \partial p_{i} \partial y_{i} \geq 0, \partial^{2} \pi_{i} / \partial p_{i} \partial \widetilde{p}_{j}=0, \partial^{2} \pi_{i} / \partial p_{i} \partial \widetilde{y}_{j}=0, \partial^{2} \pi_{i} / \partial y_{i} \partial \widetilde{y}_{j} \geq 0$ and $\partial^{2} \pi_{i} / \partial y_{i} \partial \widetilde{p}_{j}=0$. So π_{i} is supermodular in $\left(p_{i}, y_{i}\right)$ and has increasing difference in $\left(p_{i}, \widetilde{p}_{j}\right)$, $\left(p_{i}, \widetilde{y}_{j}\right),\left(y_{i}, \widetilde{p}_{j}\right)$ and $\left(y_{i}, \widetilde{y}_{j}\right)$. Similarly we show the supermodularity and increasing difference of π_{j}. According to Milgrom and Roberts (1990), Theorem 4, the game is supermodular, and a pure Nash equilibrium exists (Topkis 1998, Theorem 4.2.1).

Proof of Theorem 2. A sufficient condition (Contraction Mapping Theorem 3.4, Friedman 1990) requires $\left|\frac{\partial^{2} \pi_{i}}{\partial p_{i}^{2}}\right|>\sum_{j \neq i}\left(\left|\frac{\partial^{2} \pi_{i}}{\partial p_{i} \partial p_{j}}\right|+\left|\frac{\partial^{2} \pi_{i}}{\partial p_{i} \partial y_{j}}\right|\right)+\left|\frac{\partial^{2} \pi_{i}}{\partial p_{i} \partial y_{i}}\right|$ and $\left|\frac{\partial^{2} \pi_{i}}{\partial y_{i}^{2}}\right|>\sum_{j \neq i}\left(\left|\frac{\partial^{2} \pi_{i}}{\partial y_{i} \partial p_{j}}\right|+\right.$ $\left.\left|\frac{\partial^{2} \pi_{i}}{\partial y_{i} \partial y_{j}}\right|\right)+\left|\frac{\partial^{2} \pi_{i}}{\partial y_{i} \partial p_{i}}\right|$ for uniqueness, which are

$$
\begin{aligned}
& -\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}>\sum_{j \neq i}\left|\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}\right|+\operatorname{Pr}\left(D_{i}^{s}>y_{i}\right)+\sum_{j \neq i} \gamma_{j i} \operatorname{Pr}\left(D_{i}^{s}<y_{i}, \epsilon_{j}>y_{j}\right), \\
& 1>1 /\left[\left(p_{i}-\beta_{i}\right) r_{D_{i}^{s}}\right]+\sum_{j \neq i} \gamma_{j i} f_{D_{i}^{s} \mid \epsilon_{j}>y_{j}}\left(y_{i}\right) \operatorname{Pr}\left(\epsilon_{j}>y_{j}\right) / f_{D_{i}^{s}}\left(y_{i}\right)
\end{aligned}
$$

The required results is obtained by
(i) $1 /\left[\left(p_{i}-\beta_{i}\right) r_{D_{i}^{s}}\right] \leq 1 /\left[\left(w_{i}-\beta_{i}\right) r_{D_{i}^{s}}\right]$,
(ii) $f_{D_{i}^{s} \mid \epsilon_{j}>y_{j}}\left(y_{i}\right) \operatorname{Pr}\left(\epsilon_{j}>y_{j}\right) / f_{D_{i}^{s}}\left(y_{i}\right)<1$, and
(iii) $\operatorname{Pr}\left(D_{i}^{s}>y_{i}\right)+\sum_{j \neq i} \gamma_{j i} \operatorname{Pr}\left(D_{i}^{s}<y_{i}, \epsilon_{j}>y_{j}\right) \leq \max \left\{1, \sum_{j \neq i} \gamma_{j i}\right\}$.

Proof of Proposition 2. An immediate result from Theorem 1 is that there exists a symmetric equilibrium for the game (Cachon and Netessine 2004). Now we show that given $p_{i}=p_{-i}=p$ and $y_{i}=y_{-i}=y$ and a symmetric demand and cost function, there exists a unique symmetric equilibrium. That is, the solution from (2) and (3) under symmetry,

$$
\begin{gather*}
-(w-\beta)+(p-\beta) \operatorname{Pr}\left(D_{i}^{s} \geq y\right)=0 \text { and } \tag{A2}\\
\partial^{2} \pi_{i}^{d} / \partial p_{i}^{2}+E\left[\min \left\{D_{i}^{s}, y\right\}\right]=0 \tag{A3}
\end{gather*}
$$

is unique. Define $J(p)={ }^{\operatorname{def}} \partial^{2} \pi_{i}^{d} / \partial p_{i}^{2}+E \min \left\{D_{i}^{s}, y(p)\right\}$, where $y(p)$ is the unique solution of equation $(A 2)$. Now $J(w)>0$, and $J\left(p^{\max }\right)<0$. Also $d J(p) / d p=\partial^{2} \pi_{i}^{d} / \partial p_{i}^{2}+$ $\sum_{j \neq i} \partial^{2} \pi_{i}^{d} / \partial p_{i} \partial p_{j}+A(y) y^{\prime}(p)$, where $A(y)={ }^{\text {def }} \partial E\left[\min \left\{D_{i}^{s}, y\right\}\right] / \partial y$ and $y^{\prime}(p)=^{\text {def }} d y(p) / d p$.

First, we show that $A(y)>0$ and decreases in y. Then we show that $y^{\prime}(p)>0$ and decreases in y. Then $d J(p) / d p$ can be either always negative, or start positive but decrease to negative and stay negative. Then there is a unique p that solves $J(p)=0$, at $d J(p) / d p<0$. Thus a unique symmetric equilibrium exists.

Using a methodology introduced by Netessine and Rudi (2003) for differentiation, we have $A(y)=\partial E\left[\min \left\{D_{i}^{s}, y\right\}\right] / \partial y=\operatorname{Pr}\left(D_{i}^{s}>y_{i}\right)-(N-1) \gamma \operatorname{Pr}\left(D_{i}^{s}<y_{i}, \epsilon_{j}>y_{j}\right)$

$$
\geq \operatorname{Pr}\left(D_{i}^{s}>y_{i}\right)-\operatorname{Pr}\left(D_{i}^{s}<y_{i}, \epsilon_{j}>y_{j}\right) \geq \operatorname{Pr}\left(D_{i}^{s}>y_{i}\right)-\operatorname{Pr}\left(\epsilon_{i}>y_{i}\right) \geq 0 .
$$

Also note that $E\left[\min \left\{D_{i}^{s}, y\right\}\right]=E\left[\min \left\{\epsilon_{i}, y\right\}\right]+E \min \left[\left\{\left(y-\epsilon_{i}\right)^{+},(N-1) \gamma\left(\epsilon_{j}-y\right)^{+}\right\}\right]$. So

$$
\begin{aligned}
& A(y)=\partial\left(E\left[\min \left\{\epsilon_{i}, y\right\}\right]+E \min \left[\left\{\left(y-\epsilon_{i}\right)^{+},(N-1) \gamma\left(\epsilon_{j}-y\right)^{+}\right\}\right]\right) / \partial y \\
& =\operatorname{Pr}\left(\epsilon_{i}>y\right)+\operatorname{Pr}\left(y-(N-1) \gamma\left(\epsilon_{j}-y\right)<\epsilon_{i}<y\right)-(N-1) \gamma \operatorname{Pr}\left(y<\epsilon_{j}<y+\left(y-\epsilon_{i}\right) /(N-\right.
\end{aligned}
$$

1) γ), which decreases with y.

From $(A 2), y^{\prime}(p)=\operatorname{Pr}\left(D_{i}^{s}>y\right) /(p-\beta)\left(\partial \operatorname{Pr}\left(D_{i}^{s}>y\right) / \partial y\right)=1 /(p-\beta) r_{D_{i}^{s}}(y)$, which decreases in y under the IFR assumption for D_{i}^{s} and the fact that D_{i}^{s} stochastically decreases with y.

Proof of Theorem 3. Given $\left(p_{-i}^{c}, y_{-i}^{c}\right)$, the unique best response of retailer i will be $\left(p_{i}^{c}, y_{i}^{c}\right)$ if functions (2)-(3) are equivalent to (4)-(5). Thus, $w_{i}^{*}=c_{i}-\sum_{j \neq i}\left(p_{j}^{c}-c_{j}\right) L_{j}^{(i)}\left(\overrightarrow{p^{c}}\right) / L_{i}^{(i)}\left(\overrightarrow{p^{c}}\right)$ and $\beta_{i}^{*}=\left[w_{i}^{*}-p_{i}^{c} \operatorname{Pr}\left(D_{i}^{s}>y_{i}^{c}\right)\right] / \operatorname{Pr}\left(D_{i}^{s}<y_{i}^{c}\right)=p_{i}^{c}-\left(p_{i}^{c}-w_{i}^{*}\right) / \operatorname{Pr}\left(D_{i}^{s}<y_{i}^{c}\right)$. This approach has been justified by Winter (1993), Cachon (1999), and Tsay and Agrawal (2000). It can be shown that $c_{i}<w_{i}^{*}<p_{i}^{c}$, and $\beta_{i}^{*}=p_{i}^{c}+\left(L_{i}\left(\overrightarrow{p^{c}}\right)+E\left[\min \left(D_{i}^{s}, y_{i}^{c}\right)\right) /\left[L_{i}^{(i)}\left(p^{c}\right) \operatorname{Pr}\left(D_{i}^{s}<y_{i}^{c}\right)\right]<w_{i}^{*}\right.$.

Next, we prove that $\left(\overrightarrow{p_{i}^{c}}, \overrightarrow{y_{i}^{c}}\right)$ is a Pareto-dominant equilibrium for the whole game.
Assume there is another equilibrium $\left(\overrightarrow{p_{i}^{o}}, \overrightarrow{y_{i}^{o}}\right)$ that Pareto-dominates $\left(\overrightarrow{p_{i}^{c}}, \overrightarrow{y_{i}^{c}}\right)$. Then at $\left(\overrightarrow{p_{i}^{o}}, \overrightarrow{y_{i}^{o}}\right)$, at least one player gets better off without making any other player worse off than at $\left(\overrightarrow{p_{i}^{c}}, \overrightarrow{y_{i}^{c}}\right)$. But this is not possible since at $\left(\overrightarrow{p_{i}^{c}}, \overrightarrow{y_{i}^{c}}\right)$, the total supply chain's profit is no less than that at $\left(\overrightarrow{p_{i}^{o}}, \overrightarrow{y_{i}^{o}}\right)$. If one player is better off at $\left(\overrightarrow{p_{i}^{o}}, \overrightarrow{y_{i}^{o}}\right)$, there must be at least one player getting worse off at $\left(\overrightarrow{p_{i}^{o}}, \overrightarrow{y_{i}^{o}}\right)$. So $\left(\overrightarrow{p_{i}^{c}}, \overrightarrow{y_{i}^{c}}\right)$ is a Pareto-dominant equilibrium.

Assume that the optimum for the system is the unique. If the payoffs are transferrable among players, then similar reasoning shows that it is the unique Pareto-dominant equilibrium.

Proof of Proposition 3. With price competition only, $\beta_{i}^{*}=p_{i}^{c}-\left(p_{i}^{c}-w_{i}^{*}\right) / \operatorname{Pr}\left(D_{i}^{s}<\right.$ $\left.y_{i}^{c}\right)=\left(-c_{i}+w_{i}^{*}\right) / \operatorname{Pr}\left(D_{i}^{s}<y_{i}^{c}\right)>0$. With inventory competition only, $w_{i}^{*}=c_{i}$ and $\beta_{i}^{*}=$ $-\sum_{j \neq i} p_{j}^{c} \gamma_{i j} \operatorname{Pr}\left(D_{j}^{s}<y_{j}^{c}, \epsilon_{i}>y_{i}^{c}\right) / \operatorname{Pr}\left(D_{j}^{s}<y_{j}^{c}\right)<0$.

Proof of Proposition 4.

(i) To simplify the presentation, let $H={ }^{\operatorname{def}} E\left[\min \left\{D_{i}^{s}, y_{i}\right\}\right]$. Then $\partial H / \partial y_{i}=\operatorname{Pr}\left(D_{i}^{s}>y_{i}\right)$
and $\partial H / \partial y_{j}=-\gamma \operatorname{Pr}\left(D_{i}^{s}<y_{i}, \epsilon_{j}>y_{j}\right)$. We first show that at a symmetric equilibrium (solution of $(A 2)$ and $(A 3)$), we have

$$
\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}-\left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \frac{\partial H / \partial y_{i}}{(p-\beta)\left(\partial^{2} H / \partial y_{i}^{2}+\sum_{j \neq i} \partial^{2} H / \partial y_{i} \partial y_{j}\right)}<0 .
$$

Following Theorem 1, the symmetric equilibrium price is solved by equation (A1). That is, $J(p)=\partial \pi_{i}^{d} / \partial p_{i}+E\left[\min \left\{D_{i}^{s}, y(p)\right\}\right]=0$, where $y(p)$ is the solution to equation (3) after setting $y_{i}=y$ for all i. As in part ii of the proof of Theorem 1, the solution p to $J(p)=0$ must occur when $d J(p) / d p<0$. Note that

$$
\frac{d J(p)}{d p}=\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}+\left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \frac{d y}{d p}
$$

where $\frac{d y}{d p}=-\frac{\partial H / \partial y_{i}}{(p-\beta)\left(\partial^{2} H / \partial y_{i}^{2}+\sum_{j \neq i} \partial^{2} H / \partial y_{i} \partial y_{j}\right)}$ is derived from equation (3). Hence this intermediate result.

The main result can now be derived. Differentiating (2) and (3) with respect to β, we have

$$
\begin{aligned}
& \left(\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}\right) \frac{d p^{*}}{d \beta}+\left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \frac{d y^{*}}{d \beta}=0 \text { and } \\
& \frac{\partial H}{\partial y_{i}} \frac{d p^{*}}{d \beta}+(p-\beta)\left(\frac{\partial^{2} H}{\partial y_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}\right) \frac{d y^{*}}{d \beta}=-\left(1-\frac{\partial H}{\partial y_{i}}\right) .
\end{aligned}
$$

Using Cramer's rule, we have

$$
\begin{aligned}
& \frac{d p^{*}}{d \beta}=\left|\begin{array}{cc}
0 & \left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \\
-\left(1-\frac{\partial H}{\partial y_{i}}\right) & \left.(p-\beta)\left(\frac{\partial^{2} H}{\partial y_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}\right) \right\rvert\,
\end{array}\right| /\left|\begin{array}{cc}
\left(\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{p_{i} \partial p_{j}}\right) & \left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \\
\frac{\partial H}{\partial y_{i}} & (p-\beta)\left(\frac{\partial^{2} H}{\partial y_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}\right)
\end{array}\right|, \\
& \frac{d y^{*}}{d \beta}=\left|\begin{array}{cc}
\left(\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}\right) & 0 \\
\frac{\partial H}{\partial y_{i}} & -\left(1-\frac{\partial H}{\partial y_{i}}\right)
\end{array}\right| /\left|\begin{array}{cc}
\left(\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}\right) & \left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \\
\frac{\partial H}{\partial y_{i}} & (p-\beta)\left(\frac{\partial^{2} H}{\partial y_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}\right)
\end{array}\right| .
\end{aligned}
$$

Note that $\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}<0$ (Vives 1999), $\frac{\partial H}{\partial y_{i}}>0,1-\frac{\partial H}{\partial y_{i}}>0, \frac{\partial^{2} H}{\partial y_{i}^{2}}<0, \frac{\partial H}{\partial y_{j}}<0$, $\frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}<0$, in addition, $\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}>0$. Then $d p^{*} / d \beta>0$ and $d y^{*} / d \beta>0$.
(ii) Differentiating (2) and (3) with respect to w, we have
$\left(\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial p_{j}}\right) \frac{d p^{*}}{d w}+\left(\frac{\partial H}{\partial y_{i}}+\sum_{j \neq i} \frac{\partial H}{\partial y_{j}}\right) \frac{d y^{*}}{d w}=-\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial w}$ and
$\frac{\partial H}{\partial y_{i}} \frac{d p^{*}}{d w}+(p-\beta)\left(\frac{\partial^{2} H}{\partial y_{i}^{2}}+\sum_{j \neq i} \frac{\partial^{2} H}{\partial y_{i} \partial y_{j}}\right) \frac{d y^{*}}{d w}=1$.
Note that $\frac{\partial^{2} \pi_{i}^{d}}{\partial p_{i} \partial w}>0$. It can be shown that the only combination that cannot hold is $d p^{*} / d w<0$ and $d y^{*} / d w>0$.

Proof of Proposition 5. With linear demand, $w_{i}^{*}=c_{i}+\sum_{j \neq i}\left(p_{j}^{c}-c_{j}\right) \theta /(b+\theta)$, since p_{j}^{c} is unaffected by $\theta, d w_{i}^{*} / d \theta>0$. By equation (9), $d \beta_{i}^{*} / d \theta>0$.

Proof of Proposition 6. Substituting $\left(w_{i}^{*}, \beta_{i}^{*}\right)$ and $\left(\overrightarrow{p^{c}}, \overrightarrow{y^{c}}\right)$ into function (1), we have $\pi_{i}=\left(p_{i}^{c}-w_{i}^{*}\right)\left[L_{i}\left(\overrightarrow{p^{c}}\right)-y_{i}^{c} \operatorname{Pr}\left(\epsilon_{i}>y_{i}^{c}\right) / \operatorname{Pr}\left(\epsilon_{i}<y_{i}^{c}\right)+E\left[\min \left\{\epsilon_{i}, y_{i}^{c}\right\}\right] / \operatorname{Pr}\left(\epsilon_{i}<y_{i}^{c}\right)\right]$.

Notice that $\pi_{i}^{c}=\left(p_{i}^{c}-c_{i}\right)\left[L_{i}\left(\overrightarrow{p^{c}}\right)-y_{i}^{c} c_{i} /\left(p_{i}^{c}-c_{i}\right)+p_{i}^{c} E\left[\min \left\{\epsilon_{i}, y_{i}^{c}\right\}\right] /\left(p_{i}^{c}-c_{i}\right)\right]$.
By equations (4)-(5), we have
$c_{i} /\left(p_{i}^{c}-c_{i}\right)=\operatorname{Pr}\left(\epsilon_{i}>y_{i}^{c}\right) / \operatorname{Pr}\left(\epsilon_{i}<y_{i}^{c}\right)$ and
$p_{i}^{c} /\left(p_{i}^{c}-c_{i}\right)=1 / \operatorname{Pr}\left(\epsilon_{i}<y_{i}^{c}\right)$.
Then $\pi_{i} / \pi_{i}^{c}=\left(p_{i}^{c}-w_{i}^{*}\right) /\left(p_{i}^{c}-c_{i}\right)=\left[p_{i}^{c}-c_{i}+\sum_{j \neq i}\left(p_{j}^{c}-c_{j}\right) L_{j}^{(i)}\left(\overrightarrow{p^{c}}\right) / L_{i}^{(i)}\left(\overrightarrow{p^{c}}\right)\right] /\left(p_{i}^{c}-c_{i}\right)$
$=1+\sum_{j \neq i} L_{j}^{(i)}\left(\overrightarrow{p^{c}}\right) / L_{i}^{(i)}\left(\overrightarrow{p^{c}}\right)=1-(n-1) \theta /(b+\theta)$.
The second equality holds because $p_{i}^{c}-c_{i}=p_{j}^{c}-c_{j}$ in a symmetric game, and the last equality holds for the linear demand function.

[^0]: ${ }^{4}$ Proved in Zhao and Atkins (2007), a bivariate function $g\left(x_{1}, x_{2}\right)$ is jointly quasiconcave in two variables iff every "vertical slice" of the function is quasiconcave, or more formally, iff $g\left(x_{1}, x_{2}\right)$ is quasiconcave given $m x_{1}+x_{2}=k$ for any real values m and k.

