On-line Appendix
 "Managing Clearance Sales in the Presence of Strategic Customers" by Dan Zhang and William L. Cooper

Proof of Lemma 1. We first prove part 1. If $\beta=0$, then $h(\theta, \beta)=0$ for all θ. Hence 0 is the unique fixed point. In the remainder of the proof, we consider the case $\beta>0$. To establish the existence of a fixed point, observe that $h(\cdot, \beta)$ is continuous and $0 \leq h(\cdot, \beta) \leq 1$, so $h(\cdot, \beta)$ must have at least one fixed point θ on $[0,1]$.

We have assumed that $c>D\left(p_{1}\right)=1-p_{1}$, so $\left[c-d_{1}(\theta)\right]^{+}=c-d_{1}(\theta)$, and

$$
\begin{equation*}
h(\theta, \beta)=\min \left\{\frac{\beta\left[c-d_{1}(\theta)\right]}{D\left(p_{2}\right)-d_{1}(\theta)}, 1\right\} \tag{58}
\end{equation*}
$$

If $c \geq D\left(p_{2}\right)$ then differentiating (58) with respect to θ shows that $h(\cdot, \beta)$ is non-increasing in θ, and thus the fixed point is unique.

Next consider the case $D\left(p_{1}\right)<c<D\left(p_{2}\right)$. Here (58) reduces to $h(\theta, \beta)=\beta[c-$ $\left.d_{1}(\theta)\right] /\left[D\left(p_{2}\right)-d_{1}(\theta)\right]$. Let $f(\theta)=h(\theta, \beta)$. Substituting for $d_{1}(\theta)$ yields

$$
\begin{equation*}
f(\theta)=\beta\left[1-\frac{D\left(p_{2}\right)-c}{D\left(p_{2}\right)-\alpha D\left(p_{1}\right)-\bar{\alpha} D(r(\theta))}\right]-\theta \tag{59}
\end{equation*}
$$

Showing that the fixed point of $h(\cdot, \beta)$ is unique is equivalent to showing that $f(\theta)$ takes the value 0 exactly once. It suffices by the Poincaré-Hopf Index Theorem (see, e.g., page 48 of Vives 1999) to show that $f(\theta)$ always approaches 0 from above (more formally, $f^{\prime}(\theta)<0$ whenever $f(\theta)=0)$. To this end, note first that $f(\theta)<0$ for $\beta<\theta \leq 1$, therefore $f(\theta)$ can equal 0 only on $[0, \beta]$. We have

$$
\frac{d f(\theta)}{d \theta}=\left\{\begin{array}{cl}
\frac{\bar{\alpha} \beta\left[D\left(p_{2}\right)-c\right]\left(p_{1}-p_{2}\right)}{\left[D\left(p_{2}\right)-\alpha D\left(p_{1}\right)-\bar{\alpha} D(r(\theta)]^{2}(1-\theta)^{2}\right.}-1 & \text { if } 0 \leq \theta<\hat{\theta} \\
-1 & \text { if } \widehat{\theta} \leq \theta \leq 1
\end{array}\right.
$$

Using (59) and $D(p)=1-p$ for $p \in[0,1]$, we get

$$
g(\theta)=\left.\frac{d f(\theta)}{d \theta}\right|_{f(\theta)=0}=\left\{\begin{array}{cl}
\frac{\bar{\alpha}(\beta-\theta)^{2}\left(p_{1}-p_{2}\right)}{\beta(1-\theta)^{2}\left(1-p_{2}-c\right)}-1 & \text { if } 0 \leq \theta<\widehat{\theta} \\
-1 & \text { if } \widehat{\theta} \leq \theta \leq 1
\end{array}\right.
$$

It can be checked that $g(\theta)$ is strictly decreasing on $[0, \beta]$. Furthermore,

$$
g(0)=\frac{\bar{\alpha} \beta\left(p_{1}-p_{2}\right)}{1-p_{2}-c}-1
$$

If $g(0)<0$, then the fact that $g(\theta)$ is decreasing implies that $d f(\theta) /\left.d \theta\right|_{f(\theta)=0}<0$; i.e., $f(\theta)$ approaches 0 only from above. Hence $f(\theta)$ only take the value 0 once.

If $g(0) \geq 0$, we show that it is only possible for $f(\theta)$ to take the value 0 where $g(\theta)<0$. Let $\theta^{\prime}=\min \{\theta: f(\theta)=0\}$. Because

$$
f(0)=\beta\left[1-\frac{D\left(p_{2}\right)-c}{D\left(p_{2}\right)-D\left(p_{1}\right)}\right]>0
$$

it follows that $f(\theta)$ must approach 0 from above at θ^{\prime}. This implies that $g\left(\theta^{\prime}\right) \leq 0$. Since $g(\theta)$ is strictly decreasing, we have $g(\theta)<0$ for $\theta>\theta^{\prime}$. Hence $f(\theta)$ takes the value 0 only once. This completes the proof of part 1.

For part 2, we consider two cases.
Case $1, D\left(p_{1}\right)<c<D\left(p_{2}\right)$: To show Θ is an interval, it suffices to show that the implicit function $\theta(\beta)$ determined by (23) is continuous. Lemma 1 implies that the function $\theta(\beta)$ is a well-defined function of β. From (23) and the expression for $h(\theta, \beta)$ in (59), $\theta(\beta)$ has an inverse given by $\beta(\theta)=\theta /[1-t(\theta)]$, where

$$
t(\theta)=\frac{D\left(p_{2}\right)-c}{D\left(p_{2}\right)-\alpha D\left(p_{1}\right)-\bar{\alpha} D(r(\theta))} .
$$

Since $r(\theta)$ is continuous in θ and $D(\cdot)$ is continuous, we have that $\beta(\theta)$ is continuous. Hence $\theta(\beta)$ is continuous. The fact that Θ is an closed interval follows from the fact that the set of β values $[0,1]$ is closed. Furthermore, it is easy to see that $\theta(0)=0$ hence $0 \in \Theta$. This completes the proof for case 1 .
Case 2, $c \geq D\left(p_{2}\right)$: For $c \geq D\left(p_{2}\right)$, we have $t(\theta) \leq 0$ and

$$
\begin{aligned}
h(\theta, \beta) & =\min \{\beta[1-t(\theta)], 1\} \\
& =\left\{\begin{array}{cl}
\beta[1-t(\theta)] & 0 \leq \beta \leq 1 /[1-t(\theta)] \\
1 & \beta>1 /[1-t(\theta)]
\end{array}\right.
\end{aligned}
$$

From the definition of Θ,

$$
\Theta \supseteq\{\theta: h(\theta, \beta)=\theta \text { for some } \beta \in[0,1 /[1-t(\theta)]]\} \equiv \Theta_{1}
$$

Arguments similar to those used in the proof of case 1 can be used to show that Θ_{1} is an interval of the form $[0, \bar{\theta}]$ for some $\bar{\theta} \in[0,1]$. Furthermore, it can be checked that 0 and 1 belong to Θ_{1}. Therefore, $[0,1] \subseteq \Theta_{1} \subseteq \Theta$. Using the fact that $\Theta \subseteq[0,1]$, we conclude that $\Theta=[0,1]$. This completes the proof for case 2 .

Proof of Lemma 2. Lemma 1 shows that if $c \geq 1-p_{2}$, then $\bar{\theta}=1$. In the following, we consider the case $1-p_{1}<c<1-p_{2}$. Starting from the definition of $h(\theta, \beta)$ in (23) and after some algebra, we obtain

$$
h(\theta, \beta)= \begin{cases}h_{1}(\theta, \beta) & \text { if } 0 \leq \theta \leq \widehat{\theta} \\ h_{2}(\theta, \beta) & \text { if } \widehat{\theta}<\theta \leq 1\end{cases}
$$

where

$$
\begin{aligned}
& h_{1}(\theta, \beta)=\beta\left[1-\frac{\left(1-p_{2}-c\right)(1-\theta)}{\left(p_{1}-p_{2}\right)(1-\theta \alpha)}\right] \\
& h_{2}(\theta, \beta)=\beta\left[1-\frac{1-p_{2}-c}{1-\alpha+\alpha p_{1}-p_{2}}\right]
\end{aligned}
$$

Since $h(\theta, \beta)$ is increasing in β, and $h(\cdot, \beta)$ has a unique fixed point for each β, a geometrical argument can be used to show the fixed point of $h\left(\cdot, \beta_{1}\right)$ is greater than the fixed point of $h\left(\cdot, \beta_{2}\right)$ if $\beta_{1}>\beta_{2}$. Therefore, $\bar{\theta}$ is the solution of the equation $h(\theta, 1)=\theta$.

To solve $h(\theta, 1)=\theta$, we first consider $h_{1}(\theta, 1)=\theta$. If $\alpha=0$, we obtain $\theta=1>\widehat{\theta}$. So there is no solution to $h(\theta, 1)=\theta$ on $[0, \widehat{\theta}]$. If $0<\alpha \leq 1$, we obtain

$$
\begin{equation*}
\theta=\frac{c-1+p_{1}}{\alpha\left(p_{1}-p_{2}\right)} . \tag{60}
\end{equation*}
$$

If $c \leq c_{1}$, then the right hand side of (60) is no larger than $\widehat{\theta}$ in which case (60) gives the solution of $h(\theta, 1)=\theta$. If $c>c_{1}$, the right hand side of (60) is greater than $\widehat{\theta}$, and therefore is not a solution of $h(\theta, 1)=\theta$ on $[0, \widehat{\theta}]$.

Next, we consider $h_{2}(\theta, 1)=\theta$. If $0 \leq \alpha \leq 1$, we obtain

$$
\theta=\frac{c+\alpha p_{1}-\alpha}{\alpha p_{1}-p_{2}+1-\alpha} .
$$

Note that when $c>c_{1}$, the right hand side above is greater than $\widehat{\theta}$.

Proof of Proposition 8. The proof is largely based on the proof in the infinite capacity case. In the following, we provide a brief outline. By (36)

$$
\begin{aligned}
w^{\mathrm{FP}} & =\max _{0 \leq \theta \leq \bar{\theta}} \Psi(\theta) \\
& =\left\{\begin{array}{cl}
\max _{0 \leq \theta \leq \bar{\theta}} \Psi(\theta) & \text { if } \bar{\theta} \leq \widehat{\theta} \\
\max \left\{\max _{0 \leq \theta \leq \widehat{\theta}} \Psi(\theta), \max _{\widehat{\theta} \leq \theta \leq \bar{\theta}} \Psi(\theta)\right\} & \text { if } \bar{\theta}>\widehat{\theta}
\end{array}\right.
\end{aligned}
$$

From the proof of Proposition 4, $\Psi(\theta)$ is linear increasing for $\theta \in[\widehat{\theta}, 1]$; hence

$$
w^{\mathrm{FP}}=\left\{\begin{array}{cl}
\max _{0 \leq \theta \leq \bar{\theta}} \Psi(\theta) & \text { if } \bar{\theta} \leq \widehat{\theta} \\
\max \left\{\max _{0 \leq \theta \leq \widehat{\theta}} \Psi(\theta), \Psi(\bar{\theta})\right\} & \text { if } \bar{\theta}>\widehat{\theta}
\end{array}\right.
$$

Let $\bar{x}=\left(p_{1}-\bar{\theta} p_{2}\right) /(1-\bar{\theta})$. Observe that $\bar{x} \leq 1$ for $\theta \in[0, \widehat{\theta}]$ and $\bar{x}>1$ for $\theta \in[\widehat{\theta}, 1]$. As in the proof of Proposition 4, the optimization problem (34) can be written as

$$
w^{\mathrm{FP}}=\left\{\begin{array}{cl}
R+\left(p_{1}-p_{2}\right) \max _{p_{1} \leq x \leq \bar{x}} F(x) & \text { if } \bar{x} \leq 1 \tag{61}\\
R+\left(p_{1}-p_{2}\right) \max \left\{\max _{p_{1} \leq x \leq 1} F(x),(1-\bar{\theta}) \Omega(\bar{\theta})\right\} & \text { if } \bar{x}>1
\end{array}\right.
$$

where $F(\cdot)$ is defined in (43). There it is shown that $F(x)$ is concave on $\left[p_{1}, 1\right]$. Part (i), $\alpha=1$: Here all customers are myopic and it is straightforward to show that $\theta^{* *}=\bar{\theta}$. $\overline{\text { Part (ii), } \alpha=0}$: Here all customers are strategic. From Lemma 2, $\bar{\theta}=c /\left(1-p_{2}\right)>\widehat{\theta}$. After some algebra, we obtain

$$
w^{\mathrm{FP}}=R+\left(p_{1}-p_{2}\right) \max \left\{1-p_{1}-p_{2},-\frac{\left(1-p_{2}\right) p_{2}}{\bar{x}-p_{2}}\right\} .
$$

The result in (38) can now be easily verified.
Part (iii), $0<\alpha<1$: An optimal solution for (61) can be obtained based on the solution in the infinite capacity case. Once we have $x^{* *}$ that maximizes (61), we can get an optimal solution to (34) by taking $\theta^{* *}=\left(x^{* *}-p_{1}\right) /\left(x^{* *}-p_{2}\right)$. The details are omitted.

References

Vives, X. 1999. Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge, MA.

