
Appendix for “Sourcing through Auctions and Audits”

This appendix provides the technical proofs for the paper “Sourcing through Auctions and

Audits.”

Proof of Proposition 3

Suppose that the buyer publishes her true benefit function R(x). Given that supplier 1 wins

the auction, her payoff after the auction is maxx{R(x)−C1(x)−b2}. Since the highest losing

bid b2 does not affect supplier 1’s payoff, it is in her best interest to select the contract level

x that maximizes the supply chain profit. Therefore, the value of winning such a contract for

supplier 1 is Π1, and likewise for other suppliers when they win the auction. Also, given that

the auction is of the “second price” type, it follows that it is a dominant strategy for each

buyer to bid exactly her value, i.e., bi = Πi for every supplier. Thus, the winning supplier’s

profit is Π1 − Π2 and the buyer’s profit is Π2. Q.E.D.

Proof of Proposition 4

After winning the auction, supplier 1’s goal is to find x and b that solve the following

optimization problem:

max
x,b
{b− C1(x)|R(x)− b = S(x2, b2)},

where b is the payment supplier 1 receives from the buyer and C1(x) is her private cost. The

above optimization problem can be simplified as maxx{R(x)−C1(x)−S(x2, b2)}, where we

have replaced the price b by R(x)−S(x2, b2). Since S(x2, b2) does not affect the choice of x,

supplier 1 will choose the contract that maximizes the supply chain profit, i.e., x∗1. Following

this, her payoff after the auction is R(x∗1)− C1(x
∗
1)− S(x2, b2).

We can now determine the suppliers’ equilibrium bidding strategies. Since both the

probability of winning the auction and the payoff after the auction are unaffected by her

own bid, supplier 1’s dominant strategy is to bid such that she breaks even if the highest

losing score equals her true valuation of the supply contract. In other words, S(x1, b1) =

R(x∗1)−C1(x
∗
1). This can be implemented if she chooses x1 = x∗1 and b1 = C1(x

∗
1). Similarly,

a dominant strategy for each supplier i is to report S(xi, bi) = R(x∗i )−Ci(x
∗
i ). In equilibrium,

supplier 1’s net payoff is R(x∗1)−C1(x
∗
1)−S(x2, b2) = Π1−Π2. This implies that the buyer’s

payoff is Π2. Q.E.D.
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Proof of Proposition 5

We use the theory of auctions with contingent payments introduced in Hansen (1985) to

establish the proposition. Since the payment by the winning supplier is independent of the

winning supplier’s bid, it is a dominant strategy for each supplier to bid exactly her value,

i.e., bi = Πi for every supplier. Also, once supplier 1 wins the contract, her payoff is

−µb2 − (1− µ)E
[
R(x)− C̃1(x)

]
+ R(x)− C1(x) =µ [R(x)− C1(x)]− µb2,

since the expected value of C̃1(x) equals C1(x). Therefore, it is in supplier 1’s best interest to

select x that maximizes the supply chain profit. Because supplier 1’s bid does not affect her

payoff after the auction, bidding Π1 is her dominant strategy (likewise for other suppliers).

Thus, the winning bidder’s profit is µ [Π1 − Π2] and the buyer’s profit is µΠ2 + (1 − µ)Π1.

By varying µ in the interval (0, 1], the buyer’s profits can cover the entire interval [Π2, Π1).

Q.E.D.

Proof of Proposition 6

We drop the dependence on µ for ease of notation. Suppose supplier i wins the auction and

supplier j is the highest loser. Her expected payoff is given by:

−µbj− (1−µ)[R(x)−Di(x, e)]+R(x)−Ci(x, e) = µ[(R(x)−Ci(x, e)− 1− µ

µ
Ei(x, e))− bj].

Since bj does not affect supplier i’s choice of the contract and effort, she should choose x
µ

i

and e
µ

i after winning the auction. Moreover, her bid does not affect the payment and the

profit-sharing. This implies that supplier i’s dominant strategy is to bid

bi = di = max
x,e

{
R(x)− Ci(x, e)− 1− µ

µ
Ei(x, e)

}
.

Thus, the supplier with the highest di (i.e., d(1)) wins the auction. The buyer’s expected

profit is equal to

µd(2) + (1− µ)
[
R(xµ

(1))−D(1)(x
µ
(1), e

µ
(1))

]

= µd(2) + (1− µ)
[
R(xµ

(1))− C(1)(x
µ
(1), e

µ
(1))

]
+ (1− µ)E(1)(x

µ
(1), e

µ
(1))

= µd(2) + (1− µ)d(1) +
1− µ

µ
E(1)(x

µ
(1), e

µ
(1)).

Q.E.D.
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Proof of Proposition 7

¿From the proof to Proposition 6, di = maxx,e

{
R(x)− Ci(x, e)− 1−µ

µ
Ei(x, e)

}
. Due to the

fact that (1− µ)/µ is a decreasing function of µ, for every fixed x and e and µ1 < µ2,

R(x)− Ci(x, e)− 1− µ2

µ2

Ei(x, e) ≥ R(x)− Ci(x, e)− 1− µ1

µ1

Ei(x, e).

Thus, the maximum of the left hand side of the inequality (over x and e) is not smaller

than the maximum of the right hand side. This proves (a). The proof of (b) follows from

observing that when µ = 1 and the definition of di(µ), the supplier maximizes the channel

profit, R(x)− Ci(x, e). Q.E.D.

Proof of Lemma 1

Recall that xµ
i and eµ

i are the optimal contract and effort level for supplier i. Then,

d

dµ
[R(xµ

i )− Ci(x
µ
i , e

µ
i )]

=
d

dµ

(
R(xµ

i )− Ci(x
µ
i , e

µ
i )− 1− µ

µ
Ei(x

µ
i , e

µ
i )

)
+

d

dµ

(
1− µ

µ
Ei(x

µ
i , e

µ
i )

)

= − d

dµ

(
1− µ

µ

)
Ei(x

µ
i , e

µ
i ) +

d

dµ

(
1− µ

µ
Ei(x

µ
i , e

µ
i )

)

=

(
1− µ

µ

)
d

dµ
Ei(x

µ
i , e

µ
i ) ≥ 0,

where the second equality follows from the envelope theorem and the final inequality is due

to the assumption of the proposition. Q.E.D.

Proof of Proposition 8

Suppose that a type-θ supplier wins the auction and the highest loser is type-κ. The winning

supplier’s expected payoff under the AAU mechanism is:

−µβU(κ)− (1− µ)
[
R(x)−D(x, e,θ)− (R(x)−D(x, e, θ)− βU(θ))

]

+R(x)−D(x, e, θ)− E(x, e, θ)

= −µβU(κ)− (1− µ)βU(θ) + R(x)−D(x, e, θ)− E(x, e, θ).

Since the first two terms do not affect the winning supplier’s choice of contract and effort, she

will choose those that maximize R(x)−D(x, e, θ)−E(x, e, θ), i.e., (x∗(θ), e∗(θ)). Moreover,

since the optimal contract and effort level (x, e) do not depend on her bid, even if a type-θ
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supplier pretends to be type-τ , she still chooses (x, e) = (x∗(θ), e∗(θ)) based on her true

type.

Now we characterize the equilibrium bidding function. Let us first assume that in a

symmetric equilibrium, the bidding function is strictly decreasing. Under this assumption,

the supplier with the lowest cost wins the auction, and therefore supply chain efficiency is

achieved. Given this monotonicity, the probability that all other n− 1 suppliers’ parameters

are higher than a fixed number s with probability (1 − F (s))n−1, the bid b2 equals to β(s)

with probability density (n−1)(1−F (s))n−2f(s). We now write down the winning supplier’s

expected payoff if her true type is θ but she pretends to be type-τ :

ΠU(τ |θ) ≡
∫ ∞

τ

{−µβU(s)− (1− µ)βU(τ) + V (θ)}(n− 1)(1− F (s))n−2f(s)ds.

A necessary condition for the supplier to bid truthfully is that the above expected payoff

is maximized when τ = θ. Therefore, we can differentiate it by τ and obtain the derivative

of her expected payoff:

∂ΠU(τ |θ)
∂τ

= −(n− 1)(1− F (τ))n−2f(τ){−µβU(τ)− (1− µ)βU(τ) + V (θ)}
+(1− F (τ))n−1[−(1− µ)(βU)

′
(τ)].

Let τ = θ and make the above derivative zero. The first-order condition leads to a candidate

bidding function that satisfies

(n− 1)f(θ)βU(θ)− (1− F (θ))(1− µ)(βU)
′
(θ)− (n− 1)f(θ)V (θ) = 0,

which can be obtained from the above ordinary differential equation.

The boundary condition βU(θ) = 0,∀θ ≥ θ̄ can be rationalized as follows. First of all,

no negative bid can be sustained in equilibrium since the buyer then would incur a loss.

Suppose that βU(θ1) > 0 for some θ1 ≥ θ̄. If there is no other type that bids below βU(θ1),

then reducing the bid βU(θ1) to 0 does not hurt the type-θ1 supplier. Therefore, it suffices to

consider the case when some other types bid below βU(θ1). Since βU(θ) is continuous, with

strictly positive probability the type-θ1 supplier wins the auction. She then pays a weighted

sum of her own bid and the highest losing bid (both being nonnegative). However, her gross

profit from the supply contract is 0, and therefore the supplier incurs a loss by winning the

auction. This leads to a contradiction.

We now show that this bidding function indeed sustains an equilibrium. To this end, we

need to verify that a type-θ supplier’s payoff attains its maximum when she bids truthfully

and that the bidding function is indeed strictly monotonic.
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Plugging in the bidding function, we obtain that

∂ΠU(τ |θ)
∂τ

= −(n− 1)(1− F (τ))n−2f(τ){−βU(τ) + V (θ)}+ (1− F (τ))n−1[−(1− µ)(βU)
′
(τ)]

= (1− F (τ))n−2
{

(n− 1)f(τ)βU(τ)− (1− F (τ))(1− µ)(βU)
′
(τ)

}

−(n− 1)(1− F (τ))n−2f(τ)V (θ)

= (n− 1)(1− F (τ))n−2f(τ)(V (τ)− V (θ)),

where the last equality follows from the ordinary differential equation (4). According to

Assumption (9), if τ < θ, V (τ) > V (θ), and therefore ∂ΠU (τ |θ)
∂τ

> 0. This implies that the

supplier is better off by reporting a higher type. Likewise, when τ > θ, the supplier wants

to report a lower type. Her profit hence attains its maximum when she reports her type

truthfully. This gives us the sufficiency.

Finally, consider the monotonicity of βU(θ). Suppose βU(θ0) > V (θ0) for some θ0 in the

interior. Since

(βU)
′
(θ) =

(n− 1)f(θ)

(1− µ)(1− F (θ))

{
βU(θ)− V (θ)

}
,

(βU)
′
(θ) > 0 at θ = θ0. Moreover, V (θ) is decreasing in θ by Assumption (9), and therefore

βU(θ) > V (θ),∀θ ≥ θ0. However, the boundary condition shows that βU(θ) = 0,∀θ ≥ θ̄,

a contradiction. This implies that βU(θ) ≤ V (θ),∀θ. The strict monotonicity for all θ < θ̄

follows from the ordinary differential equation. Q.E.D.

Proof of Proposition 9

Consider a supplier’s payoff when she wins the auction. Her payoff depends on the revenue

she gets from the supply contract and the payment she makes to the buyer in the auction.

Since the same contract and effort are chosen after the auction, the gross revenue (from the

supply contract) is identical under the two mechanisms. This in fact corresponds to the

supplier’s gross valuation of the supply contract. In the auction stage, the supply contract

can be regarded as the auction object. Therefore, according to Chen (2001), this is precisely

a single-object auction. Note that the “highest” type here brings the lowest supply chain

profit. The revenue equivalence theorem applies directly given the conditions stated in the

proposition. Q.E.D.
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Proof of Proposition 10

Let us define xK(θ) and eK(θ) as the contract and the effort level selected by the winning

supplier if her type is θ, respectively. Suppose that a type-θ supplier wins the auction. Her

expected payoff after winning the auction is

−µb2 + µ
[
R(xK(θ)))−D(xK(θ), eK(θ), θ)

]
(8)

+(1− µ)E (xK(θ), eK (θ), θ)− E (xK(θ), eK (θ), θ)

= −µb2 + µ
[
R(xK(θ))−D(xK(θ), eK(θ), θ)− E (xK(θ), eK (θ), θ)

]
.

After removing redundant terms, we obtain that (xK(θ), eK(θ)) = arg max{R(x)−D(x, e, θ)−
E (x, e, θ)} = (x∗(θ), e∗(θ)), i.e., they maximize the supply chain profit.

We now derive the equilibrium bidding function. To this end, we first assume that

there exists a symmetric Bayesian Nash equilibrium, in which each supplier adopts the same

bidding strategy βK(θ) that is strictly decreasing in θ. Based on this, we characterize a

candidate bidding function. We then verify that this candidate bidding function indeed leads

to an equilibrium. Since the bidding function is decreasing, the buyer can infer the supplier’s

type after receiving the bid. Therefore, if a type-θ supplier bids truthfully and wins the

auction, the buyer expects that the unobservable part is Ê(b1, D(x, e, θ)) = E(x∗(θ), e∗(θ), θ).

Given the AAK mechanism, when a type-θ supplier bids as if she is type-τ , her expected

payoff is

−µb2 − (1− µ) [R(x(τ))−D(x(τ), e(τ), τ)− E(x(τ), e(τ), τ)]

+R(x(θ, τ))−D(x(θ, τ), e(θ, τ), θ)− E (x(θ, τ), e(θ, τ), θ),

where b2 is the second-highest bid, R(x(τ))−D(x(τ), e(τ), τ)−E (x(τ), e(τ , τ), τ) = V (τ) is

the estimated supply chain profit, and R(x(θ, τ))−D(x(θ, τ), e(θ, τ), θ)−E (x(τ), e(θ, τ), θ)

is the actual profit of the supplier. It remains to consider whether the supplier is willing to

bid truthfully. Rewriting the supplier’s expected payoff after she wins the auction as

−µb2 + µ [R(x(τ))−D(x(τ), e(τ), τ)] + (1− µ)E (x(τ), e(τ , τ), τ)− E (x(θ, τ), e(θ, τ), θ),

we can write down the winning supplier’s expected payoff if her true type is θ but she

pretends to be type-τ :

ΠK(τ |θ) =

∫ ∞

τ

{−µβK(s) + µ [R(x(τ))−D(x(τ), e(τ), τ)]

+(1− µ)E (x(τ), e(τ , τ), τ)− E (x(θ, τ), e(θ, τ), θ)}(n− 1)(1− F (s))n−2f(s)ds,
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where (n− 1)(1− F (s))n−2f(s) is the probability density that b2 equals βK(s).

A necessary condition for the supplier to bid truthfully is that the above expected payoff

is maximized when τ = θ. Therefore, we first differentiate ΠK(τ |θ) by τ :

∂ΠK(τ |θ)
∂τ

= (n− 1)(1− F (τ))n−2f(τ){−µβK(τ) + µ [R(x(τ))−D(x(τ), e(τ), τ)]

+(1− µ)E(x(τ), e(τ, τ), τ)− E(x(θ, τ), e(θ, τ), θ)}
+(1− F (τ))n−1 ∂

∂τ
{µ[R(x(τ))−D(x(τ), e(τ), τ)]

+(1− µ)E (x(τ), e(τ), τ)− E (x(θ, τ), e(θ, τ), θ)}.

Let τ = θ and make the above derivative zero. It gives rise to a candidate equilibrium

bidding function βK(θ):

βK(θ) = V (θ) +
1− F (θ)

µ(n− 1)f(θ)

∂

∂τ
{µV (τ) + E(x(τ), e(τ), τ)− E (x(θ, τ), e(θ, τ), θ)}|τ=θ

= V (θ) +
1− F (θ)

(n− 1)f(θ)
V
′
(θ)

+
1− F (θ)

µ(n− 1)f(θ)

∂

∂τ
{E(x(τ), e(τ), τ)− E (x(θ, τ), e(θ, τ), θ)} |τ=θ.

The regular monotone hazard rate condition implies that 1−F (θ)
(n−1)f(θ)

is decreasing in θ. From As-

sumption (10), we know that both V
′
(θ) and ∂

∂τ
{E(x(τ), e(τ), τ)− E (x(θ, τ), e(θ, τ), θ)} |τ=θ

are strictly decreasing in θ. Therefore, the bidding function βK(θ) is monotonic.

To verify that this is indeed an equilibrium, we have to show that the supplier’s payoff

attains its maximum when she bids truthfully. Plugging in the candidate bidding function

βK(θ) into ∂ΠK(τ |θ)
∂τ

, we obtain
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∂ΠK(τ |θ)
∂τ

= −(n− 1)(1− F (τ))n−2f(τ)µβK(τ)

+(n− 1)(1− F (τ))n−2f(τ){µ [R(x(τ))−D(x(τ), e(τ), τ)]

+(1− µ)E(x(τ), e(τ), τ)− E(x(θ, τ), e(θ, τ), θ)}
+(1− F (τ))n−1 ∂

∂τ
{µ[R(x(τ))−D(x(τ), e(τ), τ)]

+(1− µ)E (x(τ), e(τ), τ)− E (x(θ, τ), e(θ, τ), θ)}
= −(n− 1)(1− F (τ))n−2f(τ)×{

µ[V (τ)+
1− F (τ)

µ(n− 1)f(τ)

∂

∂z
{µV (z) + E (x(z), e(z ), z )− E (x(τ, z ), e(τ, z ), τ)}|z=τ ]

}

+(n− 1)(1− F (τ))n−2f(τ){µV (τ) + E(x(τ), e(τ), τ)− E(x(θ, τ), e(θ, τ), θ)}
+(1− F (τ))n−1 ∂

∂z
{µV (z) + E (x(z), e(z ), z )− E (x(θ, z ), e(θ, z ), θ)} |z=τ

= (n− 1)(1− F (τ))n−2f(τ) {E(x(τ), e(τ), τ)− E(x(θ, τ), e(θ, τ), θ)}
+(1− F (τ))n−1 ∂

∂z
{E (x(τ, z ), e(τ, z ), τ)− E (x(θ, z ), e(θ, z ), θ)} |z=τ .

When τ < θ, E(x(τ), e(τ), τ) − E(x(θ, τ), e(θ, τ), θ) > 0 and ∂
∂z

E (x(θ, z ), e(θ, z ), θ) is

increasing in θ by Assumption (10). Therefore, ∂ΠK(τ |θ)
∂τ

< 0 whenever τ < θ. This implies

that the supplier intends to report a higher type, or equivalently, submit a lower bid. Simi-

larly, if τ > θ, the supplier finds it profitable to increase her bid. This shows that ΠK(τ |θ)
is unimodal in τ and attains its maximum at τ = θ. Q.E.D.

Proof of Corollary 1

¿From Equation (8), if we let µ approach 0, the expected payoff of the winning supplier

vanishes. Hence the corollary is true. Q.E.D.

Proof of Proposition 11

Recall that in the AAK mechanism, supply chain efficiency is achieved and the buyer can

allocate arbitrarily the profit by changing µ. Therefore, the AAK mechanism performs

better than the DSC mechanism (which results in inefficient contract and effort and leaves

the winning supplier information rent). Q.E.D.
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