A. Proof of Proposition 7

From Equation (3), we can write the profit functions of Firm 1 and Firm 2, before cooperations, as follows

$$
\begin{aligned}
& \pi_{1}=\lambda q_{1} \sum_{i \in N_{1}}\left(\alpha_{i}+\sum_{k \notin N_{1}} \alpha_{k} \delta_{k i}\right)\left(s_{i}-c_{i}\right) \\
& \pi_{2}=\lambda q_{2} \sum_{i \in N_{2}}\left(\alpha_{i}+\sum_{k \notin N_{2}} \alpha_{k} \delta_{k i}\right)\left(s_{i}-c_{i}\right)
\end{aligned}
$$

The profit of Firm 1, after cooperation is given by

$$
\begin{aligned}
\pi_{1}^{\{1,2\}}= & \lambda q_{1} \sum_{i \in N_{1}}\left(s_{i}-c_{i}\right)\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)+\lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}}\left(s_{i}-\beta_{12} s_{i}\right)\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right) \\
& +\lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}}\left(\beta_{21} s_{i}-c_{i}\right)\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)
\end{aligned}
$$

which can also be written as

$$
\begin{aligned}
\Delta \pi_{1}^{\{1,2\}}= & -\lambda q_{1} \sum_{i \in N_{1}} \sum_{\ell \in N_{2} \backslash N_{1}}\left(s_{i}-c_{i}\right) \alpha_{\ell} \delta_{\ell i}+\lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)-\lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} c_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right) \\
& -\beta_{12} \lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)+\beta_{21} \lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)
\end{aligned}
$$

Similarly, using Equation (7), we can write the profit of Firm 2 after cooperation as

$$
\begin{aligned}
\Delta \pi_{2}^{\{1,2\}}= & -\lambda q_{2} \sum_{i \in N_{2}} \sum_{\ell \in N_{1} \backslash N_{2}}\left(s_{i}-c_{i}\right) \alpha_{\ell} \delta_{\ell i}+\lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)-\lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} c_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right) \\
& -\beta_{21} \lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)+\beta_{12} \lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)
\end{aligned}
$$

Then the net change in total profits of these two firms is given by

$$
\begin{aligned}
\Delta \pi^{C}= & \Delta \pi_{1}^{\{1,2\}}+\Delta \pi_{2}^{\{1,2\}} \\
= & \lambda q_{1}\left\{\sum_{i \in N_{2} \backslash N_{1}}\left(s_{i}-c_{i}\right)\left(\alpha_{i}+\alpha_{0} \delta_{0 i}\right)-\sum_{i \in N_{1}} \sum_{\ell \in N_{2} \backslash N_{1}}\left(s_{i}-c_{i}\right) \alpha_{\ell} \delta_{\ell i}\right\} \\
& +\lambda q_{2}\left\{\sum_{i \in N_{1} \backslash N_{2}}\left(s_{i}-c_{i}\right)\left(\alpha_{i}+\alpha_{0} \delta_{0 i}\right)-\sum_{i \in N_{2}} \sum_{\ell \in N_{1} \backslash N_{2}}\left(s_{i}-c_{i}\right) \alpha_{\ell} \delta_{\ell i}\right\}
\end{aligned}
$$

Now, suppose $\Delta \pi_{1}^{\{1,2\}}+\Delta \pi_{2}^{\{1,2\}} \geq 0$ and also define the following parameters

$$
\begin{gathered}
A_{1}=-\lambda q_{1} \sum_{i \in N_{1}} \sum_{\ell \in N_{2} \backslash N_{1}}\left(s_{i}-c_{i}\right) \alpha_{\ell} \delta_{\ell i}+\lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)-\lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} c_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right) \\
A_{2}=-\lambda q_{2} \sum_{i \in N_{2}} \sum_{\ell \in N_{1} \backslash N_{2}}\left(s_{i}-c_{i}\right) \alpha_{\ell} \delta_{\ell i}+\lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)-\lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} c_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right) \\
B=\lambda q_{2} \sum_{i \in N_{1} \backslash N_{2}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)
\end{gathered}
$$

$$
C=\lambda q_{1} \sum_{i \in N_{2} \backslash N_{1}} s_{i}\left(\alpha_{i}+\sum_{\ell \notin N_{1} \cup N_{2}} \alpha_{\ell} \delta_{\ell i}\right)
$$

Using these definitions, we can write $\Delta \pi_{1}^{C}$ and $\Delta \pi_{1}^{C}$ as

$$
\begin{aligned}
& \Delta \pi_{1}^{C}=A_{1}+B \beta_{21}-C \beta_{12} \\
& \Delta \pi_{2}^{C}=A_{2}-B \beta_{21}+C \beta_{12}
\end{aligned}
$$

Now let us consider the set of inequalities

$$
\begin{aligned}
A_{1}+B \beta_{21}-C \beta_{12} & \geq 0 \\
A_{2}-B \beta_{21}+C \beta_{12} & \geq 0 \\
1 \geq \beta_{21} & \geq 0 \\
1 \geq \beta_{12} & \geq 0
\end{aligned}
$$

This set of inequalities has a feasible solution if and only if $-\frac{A_{2}}{C} \leq 1$ and $-\frac{A_{1}}{B} \leq 1$. Comparing the terms of $A_{1}+B$ and $A_{1}+A_{2}$ yields that, since $\Delta \pi^{C}=A_{1}+A_{2} \geq 0, A_{1}+B \geq 0$ and therefore $-\frac{A_{1}}{B} \leq 1$. Similarly, Comparing the terms of $A_{2}+C$ and $A_{1}+A_{2}$ yields $-\frac{A_{2}}{C} \leq 1$. As a result, the set of inequalities above has always a feasible solution and therefore one can always find discount factors $0 \leq \beta_{12} \leq 1$ and $0 \leq \beta_{21} \leq 1$ such that $\Delta \pi_{1}^{C} \geq 0$ and $\Delta \pi_{2}^{C} \geq 0$.

B. Proofs of Propositions in Section 3.1

Preliminary. When $q_{1}=q_{2}=q, \alpha_{1}=\alpha_{2}=\alpha$, and $p_{1}=p_{2}=p$, Equation (11) can be written as

$$
\begin{equation*}
\Delta \pi^{C}=\lambda q p\left(\frac{2 \alpha^{2}+\alpha(3 \theta-2)-\theta}{\alpha-1}\right) \tag{23}
\end{equation*}
$$

Let $\Phi(\alpha)=\frac{2 \alpha^{2}+\alpha(3 \theta-2)-\theta}{\alpha-1}$. Since $\frac{\partial^{2} \Phi}{\partial \alpha^{2}}=\frac{4 \theta}{(\alpha-1)^{3}} \leq 0$ for all possible values of α and $\theta, \Phi(\alpha)$ is concave in α. Further $\Phi(0)=\theta \geq 0$ and $\Phi\left(\frac{1}{2}\right)=1-\theta \geq 0$. Hence, $\Phi(\alpha)$ is nonnegative. As a result, the net change in total profit, $\Delta \pi^{C}$ in equation (23), is also nonnegative.

B.1. Proof of Proposition 1

In this case, we assume that $\alpha_{1}=\alpha_{2}=\alpha$. Define $q_{1}=q+\Delta q$ and $q_{2}=q-\Delta q$, and let $p_{1}=p+\Delta p$ and $p_{2}=p-\Delta p$. Then the net change in total profit given in Equation (11) can be written as

$$
\begin{equation*}
\Delta \pi^{C}=\lambda p q \frac{2 \alpha^{2}+\alpha(3 \theta-2)-\theta}{(\alpha-1)}-\lambda \Delta p \Delta q \frac{2 \alpha^{2}(2 \theta-1)+\alpha(2-3 \theta)+\theta}{(1-\alpha)} . \tag{24}
\end{equation*}
$$

For $\Delta \pi^{C}$ to be nonnegative, the following inequality should hold

$$
\begin{equation*}
\Delta p \Delta q \leq \frac{p q\left(-2 \alpha^{2}+\alpha(2-3 \theta)+\theta\right)}{2(2 \theta-1) \alpha^{2}+\alpha(2-3 \theta)+\theta} \tag{25}
\end{equation*}
$$

Since $-2 \alpha^{2}-\alpha(3 \theta-2)+\theta \geq 0$ for all $\alpha \in\left[0, \frac{1}{2}\right]$ and all $\theta \in[0,1]$, and $-2 \alpha^{2}-\alpha(3 \theta-2)+\theta \leq$ $2(2 \theta-1) \alpha^{2}+\alpha(2-3 \theta)+\theta$, the right hand side of inequality (25) is always in the interval $[0,1]$. Note that when $\Delta p=0$, i.e., $p_{1}=p_{2}$, or when $\Delta q=0$, i.e., $q_{1}=q_{2}$, the term $\Delta p \Delta q$ is 0 . Therefore the inequality is satisfied and the cooperation is beneficial. Similarly when $\Delta p \Delta q<0$, i.e., when $\left(p_{1}>p_{2}, q_{1}<q_{2}\right)$ or when $\left(p_{1}<p_{2}, q_{1}>q_{2}\right)$, inequality (25) is satisfied. Otherwise, when $\Delta p \Delta q>0$, i.e., when $\left(p_{1}>p_{2}, q_{1}>q_{2}\right)$ or when ($p_{1}<p_{2}, q_{1}<q_{2}$) the term $\Delta p \Delta q$ should not exceed the threshold on the right hand side of (25) so that cooperation benefits the two firms.

B.2. Proof of Proposition 2

Let $\alpha_{1}=\alpha+\Delta \alpha, \alpha_{2}=\alpha-\Delta \alpha, p_{1}=p+\Delta p$, and $p_{2}=p-\Delta p$. Then, using equation (11), the net change in the total profit can be written as

$$
\begin{align*}
\Delta \pi^{C}= & \lambda p q \frac{2 \alpha\left((1-\alpha)^{2}-\Delta \alpha^{2}\right)+\theta\left((1-3 \alpha)(1-\alpha)+\Delta \alpha^{2}\right)}{(1-\alpha)^{2}-\Delta \alpha^{2}} \\
& +2 \Delta p \Delta \alpha q \lambda\left(1+\frac{\theta(1-2 \alpha)}{2 \alpha}+\frac{\left(\alpha^{2}-\Delta \alpha^{2}\right) \theta}{(1-\alpha)^{2}-\Delta \alpha^{2}}\right) \tag{26}
\end{align*}
$$

Notice that the first term of the summation in equation (26) is the same as the right hand side of equation (23) when $\Delta \alpha=0$. In the preliminary, we showed that this term is nonnegative. Since $\alpha \geq \Delta \alpha$ and $1-\alpha \geq \Delta \alpha$, first term of the summation in the above expression is also nonnegative. Moreover, since $\alpha \leq \frac{1}{2}$,

$$
\frac{\theta(1-2 \alpha)}{2 \alpha}+\frac{\left(\alpha^{2}-\Delta \alpha^{2}\right) \theta}{(1-\alpha)^{2}-\Delta \alpha^{2}} \geq 0 .
$$

Therefore, the second term of the summation in equation (26) is also nonnegative if $\Delta p \Delta \alpha \geq 0$. On the other hand, $\Delta \pi^{C}$ will still be nonnegative, for $\Delta p \Delta \alpha<0$, if $\Delta p \Delta \alpha$ satisfies the following criteria.

$$
\begin{equation*}
\Delta p \Delta \alpha \leq \frac{-2 \alpha^{2} p\left((1-\alpha)^{2}-\Delta \alpha^{2}\right)+2 \theta \alpha\left((1-3 \alpha)(1-\alpha)+\Delta \alpha^{2}\right)}{2 \alpha\left[(1-\alpha)^{2}-\Delta \alpha^{2}\right]+\theta(1-2 \alpha)\left[(1-\alpha)^{2}-\Delta \alpha^{2}\right]+2 \theta \alpha\left(\alpha^{2}-\Delta \alpha^{2}\right)} \tag{27}
\end{equation*}
$$

B.3. Proof of Proposition 3

Let $\alpha_{1}=\alpha+\Delta \alpha, \alpha_{2}=\alpha-\Delta \alpha, q_{1}=q+\Delta q$, and $q_{2}=q-\Delta q$. Then the net change in the total profit can be written as

$$
\begin{align*}
\Delta \pi^{C}= & \lambda p q \frac{2 \alpha\left((1-\alpha)^{2}-\Delta \alpha^{2}\right)+\theta\left((1-3 \alpha)(1-\alpha)+\Delta \alpha^{2}\right)}{(1-\alpha)^{2}-\Delta \alpha^{2}} \\
& -2 \Delta q \Delta \alpha p \lambda\left(1+\frac{\theta(1-2 \alpha)}{2 \alpha}+\frac{\left(\alpha^{2}-\Delta \alpha^{2}\right) \theta}{(1-\alpha)^{2}-\Delta \alpha^{2}}\right) \tag{28}
\end{align*}
$$

Following our proof of Proposition 2 and using the similarity of equation (26) and equation (28), notice that $\Delta \pi^{C}$ is nonnegative when $\Delta q \Delta \alpha \leq 0$ or when $\Delta q \Delta \alpha>0$ and

$$
\begin{equation*}
\Delta q \Delta \alpha \leq \frac{2 q \alpha^{2}\left((1-\alpha)^{2}-\Delta \alpha^{2}\right)+2 \theta \alpha\left((1-3 \alpha)(1-\alpha)+\Delta \alpha^{2}\right)}{2 \alpha\left[(1-\alpha)^{2}-\Delta \alpha^{2}\right]+\theta(1-2 \alpha)\left[(1-\alpha)^{2}-\Delta \alpha^{2}\right]+2 \theta \alpha\left(\alpha^{2}-\Delta \alpha^{2}\right)} \tag{29}
\end{equation*}
$$

C. Proofs of Propositions in Section 4

C.1. Proof of Proposition 8

We consider m symmetrical single-product firms. Let $\alpha_{0}=1-\sum_{i=1}^{m} \alpha_{i}$ be the market share of products that are not produced by these m firms, representing the outside option. The net change in total profit of these m firms after cooperation can be written by using Equation (10) as

$$
\begin{equation*}
\Delta \pi^{C}=\sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m} \lambda p_{i} q_{j}\left(\alpha_{i}+\alpha_{0} \frac{\theta \alpha_{i}}{1-\alpha_{0}}\right)-\sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m} \lambda p_{i} q_{i}\left(\alpha_{j} \frac{\theta \alpha_{i}}{1-\alpha_{j}}\right) . \tag{30}
\end{equation*}
$$

Let $\alpha_{i}=\alpha=\frac{1-\alpha_{0}}{m}, q_{i}=q$, and $p_{i}=p$, for $i=1, \ldots, m$. The above equation then reduces to

$$
\begin{equation*}
\Delta \pi^{C}=\lambda p q m(m-1)\left(\alpha+\frac{\alpha_{0} \theta \alpha}{1-\alpha_{0}}-\frac{\theta \alpha^{2}}{1-\alpha}\right) \tag{31}
\end{equation*}
$$

Substituting $\alpha_{0}=1-m \alpha$ into Equation (31) yields

$$
\Delta \pi^{C}=\lambda p q(m-1) \frac{\alpha^{2} m+\alpha((m+1) \theta-m)-\theta}{(\alpha-1)}
$$

When $\alpha=0, \Delta \pi^{C}=\lambda p q(m-1) \theta>0$. Similarly when $\alpha=\frac{1}{m}, \Delta \pi^{C}=\lambda p q(m-1-\theta)>0 . \Delta \pi^{C}$ reaches its unique maximum of $\lambda p q m(m-1)\left((1-\sqrt{\theta})^{2}+\theta\right)>0$ at $\alpha^{*}=1-\sqrt{\theta}$. Therefore $\Delta \pi^{C} \geq 0$ for all $0 \leq \alpha \leq \frac{1}{m}$.

C.2. Proof of Proposition 9

Since there are $|M|=m$ single-product firms and $|M|=m$ products, we set $\alpha=\frac{1}{m}$ and $q=\frac{1}{m}$. In this market, let us consider an existing cooperation of k firms, where $k<m$. All the products that are not produced by this cooperation are lumped into a single product with $\alpha_{0}=1-k \alpha=\frac{m-k}{m}$ as the outside option. The net change in total profit can be written by using Equation (10) as

$$
\begin{equation*}
\Delta \pi^{C_{k}}=\lambda p q k(k-1)\left(\alpha+\frac{\alpha_{0} \theta \alpha}{1-\alpha_{0}}-\frac{\theta \alpha^{2}}{1-\alpha}\right) \tag{32}
\end{equation*}
$$

Since the firms are symmetric, the total benefit is naturally shared equally among k firms. Substituting $\alpha=\frac{1}{m}, q=\frac{1}{m}$, and $\alpha_{0}=\frac{m-k}{m}$ into the above equation yields the net change in the profit of Firm i, where $i \in C_{k}$, can be computed as

$$
\begin{equation*}
\Delta \pi_{i}^{C_{k}}=\lambda p \frac{k-1}{m^{2}}\left(1+\frac{\theta(m-k)}{k}-\frac{\theta}{m-1}\right) . \tag{33}
\end{equation*}
$$

Now let us consider the case of adding one more member to this cooperation. In this case, the net increase in Firm i 's profit can be written directly from Equation (35) by replacing k with $k+1$ that yields

$$
\begin{equation*}
\Delta \pi_{i}^{C_{k+1}}=\lambda p \frac{k}{m^{2}}\left(1+\frac{\theta(m-k-1)}{k+1}-\frac{\theta}{m-1}\right) \tag{34}
\end{equation*}
$$

$\pi_{i}^{C_{k+1}}-\pi_{i}^{C_{k}}$ can be derived from Equations (35) and (34) as

$$
\begin{equation*}
\Delta \pi_{i}^{C_{k+1}}-\Delta \pi_{i}^{C_{k}}=\frac{\lambda p}{m^{2}}\left(1-\theta\left(\frac{1}{m-1}-\frac{m}{k(k+1)}+1\right)\right) \tag{35}
\end{equation*}
$$

Since $k \leq m-1, m \geq 2$, and $\theta \leq 1$, the above term is always positive and therefore adding one more member to any cooperation with $k \leq m-1$ firms is always beneficial for each firm. As a result, a cooperation involving all m firms (grand coalition) would naturally form in a market with m symmetric single-product firms.

