Appendix A: Proof of Theorem 1

We first consider k even; the result for k odd easily follows. Let u_{j} denote the number of sequences σ corresponding to Case j that occur in a k-unit cycle, for all j and $r(j=2,3, \ldots, 9$, and $r=1, \ldots, \frac{k}{2}$) and machines $M_{i}, i=1, \ldots, m$. As there are $\frac{k}{2}$ sequences for each machine in a k-unit cycle, we have $\frac{m k}{2}=u_{2}+u_{3}+u_{4}+u_{5}+u_{6}+u_{7}+u_{8}+u_{9}$. Let U_{j} be the collection of indices of machines in Case j. If a machine M_{i} has s sequences in Case j, then there will be s instances of i in U_{j}. u_{0} (respectively, u_{1}) represents the number of visits to $I(O)$ during which the robot unloads (loads) two parts.

By adding residence times corresponding to the possible cases for a machine in a dualgripper robot cell, we get a lower bound for T_{r}, the aggregate residence time of the robot at all machines for a k-unit cycle:

$$
\begin{array}{r}
T_{r} \geq 2(m+1) k \epsilon+\left(u_{0}+u_{1}+u_{4}+u_{5}+u_{7}+2 u_{8}+u_{9}\right) \theta \\
+\sum_{i \in U_{3}} p_{i}+\sum_{i \in U_{5}} p_{i}+2 \sum_{i \in U_{6}} p_{i}+\sum_{i \in U_{7}} p_{i}+2 \sum_{i \in U_{9}} p_{i} .
\end{array}
$$

The computation of required movement time is identical to that of Geismar et al. (2006):

$$
T_{t}=(m+2) k \delta+\left(-u_{0}-u_{1}+2 u_{2}+u_{3}+u_{4}-u_{9}\right) \delta .
$$

Hence, we have lower bound $T_{r}+T_{t}$, which can be considered as a fixed amount $((m+2) k \delta+$ $2(m+1) k \epsilon$) plus an amount that varies according to which case each sequence is assigned. This is represented for machines M_{1}, \ldots, M_{m} by the summation term in expression (1). Table 4 lists the minimum time added to the cycle time for each 2-unit sequence that is assigned to a particular case. The last term in expression (1) corresponds to the time added to the per unit cycle time if $u_{0}=u_{1}=1$.

The added time for Case 5 or Case 7 is not included in the summation term because $p_{i}+\theta \geq \min \left\{2 p_{i}, 2 \theta\right\}$. Similarly, the added times for Cases 3 and 4 are not included because $p_{i}+\delta \geq \min \left\{2 p_{i}, 2 \delta\right\}$ and $\delta+\theta \geq \min \{2 \delta, 2 \theta\}$, respectively.

For k odd, a lower bound can be found by considering the cycle to be the concatenation of $(k-1) / 2$ subsequences $\left(M_{i, 2 r-1}^{\ell}, \sigma_{1}, M_{i, 2 r-1}^{u}, \sigma_{2}, M_{i, 2 r}^{\ell}, \sigma_{3}, M_{i, 2 r}^{u}, \sigma_{4}\right)$, and a subsequence $\left(M_{i, k}^{\ell}, \sigma_{1}, M_{i, k}^{u}, \sigma_{2}\right)$. Note that a lower bound for robot actions in a subsequence ($M_{i, k}^{\ell}, \sigma_{1}, M_{i, k}^{u}, \sigma_{2}$)

Case	Added time
Case $0, u_{0}=1$	$\theta-\delta$
Case $1, u_{1}=1$	$\theta-\delta$
Case 2	2δ
Case 3	$p_{i}+\delta$
Case 4	$\delta+\theta$
Case 5	$p_{i}+\theta$
Case 6	$2 p_{i}$
Case 7	$p_{i}+\theta$
Case 8	2θ
Case 9	$2 p_{i}+\theta-\delta$

Table 4: Variable amount added to the cycle time for each case.
is $(m+2) \delta+2(m+1) \epsilon+\sum_{i=1}^{m} \min \left\{p_{i}, \delta, \theta\right\}$, which is greater than or equal to the right-hand side of (1). Therefore, (1) is a lower bound for the per unit cycle time for k odd, too.

Appendix B: Proofs of Lemmas 1 through 4

Proof of Lemma 1:

a) If $\max p_{i} \geq(m+2) \delta+2 m \epsilon+(m-1) \theta$, then $S_{m}^{2}=p_{h}+2 \epsilon+\theta$, which is a lower bound on the per unit cycle time of a dual-gripper robot cell (Geismar et al. 2006). The condition $\theta \leq 3 \delta+2 \epsilon$ ensures that $p_{h}+2 \epsilon+\theta \leq p_{h}+3 \delta+4 \epsilon$, which is a lower bound for the per unit cycle time of a single-gripper robot cell (Dawande et al. 2002).
b) $p_{h} \geq(m+2) \delta+2 m \epsilon+(m-1) \theta$ and $\theta \geq 3 \delta+2 \epsilon$ imply that $\pi_{D}=p_{h}+3 \delta+4 \epsilon \leq p_{h}+2 \epsilon+\theta$, so π_{D} is optimal over all single-gripper and dual-gripper cycles.

Proof of Lemma 2:

a) $\Omega^{1} \geq p_{h}+3 \delta+4 \epsilon=T\left(\pi_{D}\right)$.
b) $T\left(\pi_{D}\right)=p_{h}+3 \delta+4 \epsilon \leq p_{h}+2 \epsilon+\theta \leq \Omega^{2}$.
c) $\Omega^{2} \geq p_{h}+2 \epsilon+\theta=T\left(\pi_{D}\right)-(3 \delta+2 \epsilon-\theta)$.

The condition $\theta \leq 3 \delta+2 \epsilon$ implies that the fraction

$$
T\left(\pi_{D}\right) \leq \frac{p_{h}+3 \delta+4 \epsilon}{p_{h}+2 \epsilon+\theta} \Omega^{2}
$$

is maximized by minimizing p_{h}. Therefore

$$
T\left(\pi_{D}\right) \leq \frac{2(m+1)(\delta+\epsilon)}{(2 m-1) \delta+2 m \epsilon+\theta} \Omega^{2} \leq \frac{2(m+1)(\delta+\epsilon)}{2 m(\delta+\epsilon)} \Omega^{2}=\frac{m+1}{m} \Omega^{2}
$$

d) Either S_{m}^{2} is optimal (by Lemma 1) or $T\left(S_{m}^{2}\right)=(m+2) \delta+2(m+1) \epsilon+m \theta \leq 2(m+$ 1) $(\delta+\epsilon) \leq p_{h}+3 \delta+4 \epsilon \leq \Omega^{1}$. Therefore

$$
T\left(S_{m}^{2}\right) \leq \frac{2(m+1)(\delta+\epsilon)}{(2 m-1) \delta+2 m \epsilon+\theta} \Omega^{2} \leq \frac{2(m+1)(\delta+\epsilon)}{(2 m-1) \delta+2 m \epsilon} \Omega^{2} \leq \frac{2 m+2}{2 m-1} \Omega^{2}
$$

Proof of Lemma 3: If $\theta \leq \delta \leq p_{i}, \forall i$, then either S_{m}^{2} is optimal (by Lemma 1) or $T\left(S_{m}^{2}\right)=$ $(m+2) \delta+2(m+1) \epsilon+m \theta \leq 2(m+1)(\delta+\epsilon) \leq \Omega^{1}$. That $\theta \leq \delta \leq p_{i}, \forall i$, implies $T\left(S_{m}^{2}\right)=\Omega^{2}$ is proven in Geismar et al. (2006). If $\delta \leq \theta$, and $p_{h} \leq(2 m-1) \delta+2(m-1) \epsilon$, then $T\left(\pi_{D}\right)=$ $2(m+1)(\delta+\epsilon) \leq(m+1)(\delta+2 \epsilon+\theta) \leq \Omega^{2}$. That $p_{i} \geq \delta, \forall i$, implies $T\left(\pi_{D}\right)=\Omega^{1}$ is proven in Dawande et al. (2002).

Proof of Lemma 4: Geismar et al. (2006) show that S_{o}^{2} is optimal over all dual-gripper cycles for $p_{i} \leq(\delta+\theta) / 2, \forall i$. Dawande et al. (2002) show that π_{U} is optimal over all single-gripper cycles for $p_{i} \leq \delta, \forall i$. Recall that S_{o}^{2} is a 2 -unit cycle. If $\theta \leq \delta$, then

$$
\frac{T\left(S_{o}^{2}\right)}{2}=\frac{(m+2)}{2} \delta+2(m+1) \epsilon+\frac{(m+2)}{2} \theta+\sum_{i=1}^{m} p_{i} \leq(m+2) \delta+2(m+1) \epsilon+\sum_{i=1}^{m} p_{i}=\Omega^{1}
$$

If $\delta \leq \theta$, then
$T\left(\pi_{U}\right)=(m+2) \delta+2(m+1) \epsilon+\sum_{i=1}^{m} p_{i} \leq \frac{(m+2)}{2} \delta+2(m+1) \epsilon+\frac{(m+2)}{2} \theta+\sum_{i=1}^{m} p_{i}=\Omega^{2}$

Appendix C: Proof of Theorem 2

Proof of Theorem 2:

Step 1: If $p_{i} \leq \delta, \forall i$, then π_{U} is optimal by Lemma 4.
Step 2: If $\max _{1 \leq i \leq m} p_{i}+3 \delta+4 \epsilon \geq 2(m+1)(\delta+\epsilon)$, then π_{D} is optimal by Lemma 2

Step 3: If $p_{i} \geq \delta, \forall i$, then π_{D} is optimal by Lemma 3.

Step 4: If $\left|D_{\delta}\right| \geq \frac{5 m-4}{9}$, then, from (3), we have

$$
\begin{aligned}
\Omega^{1} & \geq\left[m+\frac{5 m-4}{9}+2\right] \delta+2(m+1) \epsilon+\sum_{i \in D_{\delta}^{c}} p_{i} \\
& \geq\left(\frac{14}{9} m+\frac{14}{9}\right) \delta+2(m+1) \epsilon
\end{aligned}
$$

Thus,

$$
T\left(\pi_{D}\right)=2(m+1)(\delta+\epsilon) \leq \frac{2(m+1)(\delta+\epsilon)}{\left(\frac{14}{9} m+\frac{14}{9}\right) \delta+2(m+1) \epsilon} \Omega^{1} \leq \frac{9}{7} \Omega^{1}
$$

We now show tightness. Suppose $m=8, p_{1}=p_{3}=p_{5}=p_{7}=2 \delta$, and $p_{2}=p_{4}=$ $p_{6}=p_{8}=\nu<\delta$. An optimal cycle is the basic cycle based on the initial partition: $\pi_{1}=\left(A_{0}, A_{7}, A_{8}, A_{5}, A_{6}, A_{3}, A_{4}, A_{1}, A_{2}\right), T\left(\pi_{1}\right)=L B_{1}^{1}=14 \delta+18 \epsilon+4 \nu . \quad$ Algorithm CCell2 outputs π_{D}, and $T\left(\pi_{D}\right)=18(\delta+\epsilon)$. Therefore, $T\left(\pi_{D}\right) / T\left(\pi_{1}\right) \rightarrow 9 / 7$ as $\epsilon \rightarrow 0$ and $\nu \rightarrow 0$.

Step 5: The structure of V_{2} and that $\left|D_{\delta}\right| \leq \frac{m+2}{6}$ imply that

$$
\begin{aligned}
\left|V_{2}\right| & \leq 3\left|D_{\delta}\right| \leq \frac{m+2}{2}, \text { so } \\
\alpha & \leq \frac{\left(m+\frac{m+2}{2}+2\right) \delta+2(m+1) \epsilon+\sum_{i \in V_{1}} p_{i}}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon+\sum_{i \in D_{\delta}^{c}} p_{i}} \Omega^{1} . \\
& \leq \frac{\frac{3}{2}(m+2)}{\frac{7}{6}(m+2)} \Omega^{1}=\frac{9}{7} \Omega^{1} .
\end{aligned}
$$

We now investigate the value of $\beta_{i}, i \in V_{2}$:

1. By construction, for $i \in D_{\delta}, \beta_{i}=p_{i}+3 \delta+4 \epsilon$. By (4), if $T\left(\widetilde{\pi}_{B}\right)=p_{i}+3 \delta+4 \epsilon$ for some i, then $\widetilde{\pi}_{B}$ is optimal.
2. For $i \in V_{2} \backslash D_{\delta}, \beta_{i}=p_{i}+3 \delta+4 \epsilon+\sum_{j \in X_{i} \cup Y_{i}}\left(p_{j}+\delta+2 \epsilon\right)$. Since $i \in D_{\delta}^{c}, X_{i} \subset D_{\delta}^{c}$, and $Y_{i} \subset D_{\delta}^{c}$, we know that $p_{i}+\sum_{j \in X_{i} \cup Y_{i}} p_{j} \leq \sum_{j \in D_{\delta}^{c}} p_{j}$. Cycle $\widetilde{\pi}_{B}$ was designed so that $\left|V_{2}\right| \geq 2$. This implies that $\left|X_{i} \cup Y_{i}\right| \leq m-2$. Hence,

$$
\begin{aligned}
\beta_{i} & \leq \sum_{j \in D_{\delta}^{c}} p_{j}+3 \delta+4 \epsilon+(m-2)(\delta+2 \epsilon) \\
& =\sum_{j \in D_{\delta}^{c}} p_{j}+(m+1) \delta+2 m \epsilon, i \in V_{2} \backslash D_{\delta} .
\end{aligned}
$$

This value is strictly less than $L B_{1}^{1}$. Hence, $\beta_{i}, i \in V_{2} \backslash D_{\delta}$, will not dominate the cycle time expression.

Step 6: We show that $\alpha / L B_{1}^{1} \leq \frac{9}{7}$ by first proving that

$$
\begin{equation*}
\left|V_{2} \backslash D_{\delta}\right| \leq \frac{2}{7}\left(m+\left|D_{\delta}\right|+2\right) \tag{6}
\end{equation*}
$$

i.e., by establishing a bound on the number of elements of D_{δ}^{c} that the algorithm places into V_{2}. The largest value for $\left|V_{2} \backslash D_{\delta}\right|$ is obtained by maximizing the number of elements $i \in D_{\delta}$ for which $\left|Y_{i}\right|>\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+1$. For each such i, two elements of Y_{i} (the first and the last) will be added to $V_{2} \backslash D_{\delta}$. For example, consider the cell in Figure 5: $m=12, D_{\delta}=\{1,6,11,12\}$, so $\left|D_{\delta}\right|=4$ and $\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+1=3.89 .\left|Y_{1}\right|=\left|Y_{6}\right|=4$, so indices $2,5,7$, and 10 will be added to V_{2}. In general, such a maximal $\left|V_{2} \backslash D_{\delta}\right|$ is

Figure 5: Example of cell with maximal $\left|V_{2} \backslash D_{\delta}\right|$.
formed in an m-machine cell if

$$
\begin{aligned}
D_{\delta}=\{1, & 2+\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor \\
3 & +2\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor \\
& \vdots \\
& z+(z-1)\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor \\
& \left.z+(z-1)\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor+1, \ldots, m\right\} .
\end{aligned}
$$

Note that this uniquely defines the integer z as

$$
z=\left\lceil\frac{m}{\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+3\right\rfloor}\right\rceil
$$

and the size of D_{δ} as

$$
\left|D_{\delta}\right|=m-(z-1)\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor .
$$

($z=3$ and $\left|D_{\delta}\right|=4$ for the example in Figure 5.) In such a cell, $\left|V_{2} \backslash D_{\delta}\right|=2(z-1)$, where $\left|Y_{i_{j}}\right|=\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor$ for $i_{j} \in D_{\delta}, j=1, \ldots, z-1$, and $\left|Y_{i_{j}}\right|=0$, for $i_{j} \in D_{\delta}, j=z, \ldots,\left|D_{\delta}\right|$, and $\left|X_{i_{1}}\right|=0$. Thus, there are $z-1$ intervals in which the first machine is an element of D_{δ} and the next $\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right\rfloor$ machines are elements of D_{δ}^{c}. (In Figure $5, M_{1}$ and M_{6} are elements of D_{δ} that are each followed by four elements of D_{δ}^{c}.) The final $\left|D_{\delta}\right|-z+1$ machines $\left(M_{11}, M_{12}\right)$ are elements of D_{δ}. Hence, this requires that there are at least $(z-1)\left\lfloor\left(\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+3\right)\right\rfloor+\left|D_{\delta}\right|-z+1=$ $(z-1)\left\lfloor\left(\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right)\right\rfloor+\left|D_{\delta}\right|$ machines in the cell. To prove (6) we must show that our algorithm cannot add another machine to $V_{2} \backslash D_{\delta}$, if $2(z-1)=\frac{2}{7}\left(m+\left|D_{\delta}\right|+\right.$ 2). For the algorithm to add another machine to $V_{2} \backslash D_{\delta}$, there must be an additional $\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+1\right\rfloor$ elements of D_{δ}^{c} between any pair of the last $\left|D_{\delta}\right|-z+1$ elements of D_{δ}. We claim that such a configuration is infeasible. If it were feasible, then

$$
\begin{align*}
(z-1) & \left\lfloor\left(\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+2\right)\right\rfloor+\left|D_{\delta}\right|+\left\lfloor\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+1\right\rfloor
\end{aligned} \begin{aligned}
& \leq m \\
\Rightarrow(z-1)\left(\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)+1\right)+\left|D_{\delta}\right|+\frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right) & \leq m \tag{7}
\end{align*}
$$

Because $\left|D_{\delta}\right|>\frac{m+2}{6}$, we have $m+\left|D_{\delta}\right|+2>\frac{7}{6}(m+2)$ and $z-1=\frac{1}{7}\left(m+\left|D_{\delta}\right|+2\right)>\frac{m+2}{6}$. Thus, (7) must satisfy

$$
\begin{aligned}
\frac{m+2}{6}\left(\frac{9}{56} \cdot \frac{7}{6}(m+2)+1\right)+\frac{m+2}{6}+\frac{9}{56} \cdot \frac{7}{6}(m+2) & \leq m \\
(m+2)(3 m+22)+34(m+2) & \leq 96 m \\
3 m^{2}-34 m+112 & \leq 0
\end{aligned}
$$

which is a contradiction. Therefore, $\left|V_{2} \backslash D_{\delta}\right| \leq \frac{2}{7}\left(m+\left|D_{\delta}\right|+2\right)$.

Thus,

$$
\begin{aligned}
\frac{\alpha}{L B_{1}^{1}} & \leq \frac{\left(m+\left|D_{\delta}\right|+\frac{2}{7}\left(m+\left|D_{\delta}\right|+2\right)+2\right) \delta+2(m+1) \epsilon+\sum_{j \in V_{1}} p_{j}}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon+\sum_{j \in D_{\delta}^{c}} p_{j}} \\
& \leq \frac{\frac{9}{7}\left(m+\left|D_{\delta}\right|+2\right)}{m+\left|D_{\delta}\right|+2}=\frac{9}{7}
\end{aligned}
$$

We now show that $\beta_{i} \leq \frac{9}{7} \max \left\{L B_{1}^{1}, L B_{2}^{1}\right\}$, for all $i \in V_{2}$. First, either $\beta_{i} \leq \frac{9}{7} L B_{2}^{1}$ or

$$
\begin{aligned}
\frac{\beta_{i}}{L B_{2}^{1}} & =\frac{p_{i}+3 \delta+4 \epsilon+\sum_{j \in X_{i} \cup Y_{i}}\left(p_{j}+\delta+2 \epsilon\right)}{p_{i}+3 \delta+4 \epsilon}>\frac{9}{7} \\
& \Leftrightarrow 7 \sum_{j \in X_{i} \cup Y_{i}}\left(p_{j}+\delta+2 \epsilon\right)>2\left(p_{i}+3 \delta+4 \epsilon\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{\beta_{i}}{L B_{1}^{1}} & \leq \frac{\frac{9}{2} \sum_{j \in X_{i} \cup Y_{i}}\left(p_{j}+\delta+2 \epsilon\right)}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon+\sum_{i \in D_{\delta}^{c}} p_{i}} \\
& =\frac{\sum_{j \in X_{i} \cup Y_{i}}\left(\frac{7}{2} p_{j}+\frac{9}{2}(\delta+2 \epsilon)\right)+\sum_{j \epsilon X_{i} \cup Y_{i}} p_{j}}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon+\sum_{i \in D_{\delta}^{c}} p_{i}} \\
& \leq \frac{\sum_{j \in X_{i} \cup Y_{i}}\left(\frac{7}{2} p_{j}+\frac{9}{2}(\delta+2 \epsilon)\right)}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon} \quad\left[X_{i} \cup Y_{i} \subset D_{\delta}^{c}\right] \\
& <\frac{\left|X_{i} \cup Y_{i}\right|(8 \delta+9 \epsilon)}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon} . \quad\left[p_{j}<\delta, j \in X_{i} \cup Y_{i}\right]
\end{aligned}
$$

Because $\left|X_{i} \cup Y_{i}\right| \leq \frac{9}{56}\left(m+\left|D_{\delta}\right|+2\right)$, for $i \in D_{\delta}$, and $\left|D_{\delta}\right|<\frac{5 m-4}{9}$ (by Step 4),

$$
\frac{\beta_{i}}{L B_{1}^{1}} \leq \frac{\left(m+\left|D_{\delta}\right|+2\right)\left(8 \cdot \frac{9}{56} \delta+9 \cdot \frac{9}{56} \epsilon\right)}{\left(m+\left|D_{\delta}\right|+2\right) \delta+2(m+1) \epsilon} \leq \frac{9}{7}
$$

Appendix D: Proof of Lemma 5

Proof of Lemma 5: We find the worst case bound and show that it is less than or equal to $3 / 2$. The coefficient of θ in $T\left(S_{a}\right)$ (equation (5)) cannot be greater than its coefficient in $2 L B_{1}^{2}$, so the largest value for $T\left(S_{a}\right) / 2 L B_{1}^{2}$ occurs when $\theta=0$. Since $D_{2}^{c}=U_{5} \cup U_{6} \cup U_{7} \cup U_{9}$ in cycle
S_{a}, we have

$$
\begin{align*}
\frac{T\left(S_{a}\right)}{2 L B_{1}^{2}} & \leq \frac{\left(2 m+4-u_{0}-u_{1}-u_{9}\right) \delta+4(m+1) \epsilon+\sum_{i \in U_{5} \cup U_{7}} p_{i}+2 \sum_{i \in U_{6} \cup U_{9}} p_{i}}{\left[2(m+1)-\left|D_{2}^{c}\right|\right] \delta+4(m+1) \epsilon+2 \sum_{i \in D_{2}^{c}} p_{i}} \\
& \leq \frac{2 m+4-u_{0}-u_{1}-u_{9}}{2(m+1)-\left|D_{2}^{c}\right|} . \tag{8}
\end{align*}
$$

First consider the case in which $U_{9}=\emptyset$. The following cell has the largest $\left|D_{2}^{c}\right|$ for which algorithm DGR-Cell assigns no machine to $U_{9}: m=3 k, p_{3 j-2}<(\delta+\theta) / 2, p_{3 j}<(\delta+\theta) / 2$, $p_{3 j-1} \geq(\delta+\theta) / 2$ (but the $p_{3 j-1}$ are not large enough to cause positive partial waiting), $j=$ $1, \ldots, k$, so $\left|D_{2}\right|=k$ and $\left|D_{2}^{c}\right|=2 k$. Thus, this cell has $k-1$ runs with $s=2$, plus $\{1, m\} \subset D_{2}^{c}$, so the algorithm makes the assignments $58668668 \cdots 86687$. Thus, bounding inequality (8) becomes

$$
\frac{T\left(S_{a}\right)}{2 L B_{1}^{2}} \leq \frac{2 m+2}{2(m+1)-\left|D_{2}^{c}\right|} \leq \frac{6 k+2}{4 k+2}<\frac{3}{2} .
$$

Now suppose $U_{9} \neq \emptyset$. If a run with length $s \geq 2$ begins at $r_{1}=1$ or ends at $r_{G}+s_{G}-1=m$, then $s-1$ elements (i.e., at minimum one-half of the elements) of that run are placed into U_{9}. For any other run with length $s \geq 3, s-2$ elements (i.e., at minimum one-third of the elements) of that run are placed into U_{9}. Therefore, because we want to maximize $\left|D_{2}^{c}\right|-u_{9}$, we consider only those runs with $s=3$ and $r_{1} \neq 1, r_{G}+s_{G}-1 \neq m$. In each of these G runs, for $g=1, \ldots, G$, we have $r_{g} \in U_{7}, r_{g+1} \in U_{9}, r_{g+2} \in U_{5} ; r_{g+3} \in U_{8}$ to separate the runs. Hence, the cell that maximizes $\left|D_{2}^{c}\right|-u_{9}$ and therefore has the largest value for (8) causes algorithm DGR-Cell to make case assignments so that the cycle begins with one trio assigned 586 and $\ell-1$ trios assigned 686, has a machine in Case 8 (to separate the runs), then has G quartets assigned 7958, and concludes with $j-\ell-1$ trios assigned 686 and one trio assigned 687. Therefore, $m=4 G+3 j+1,\left|D_{2}^{c}\right|=3 G+2 j, u_{9}=G$, so

$$
\frac{T\left(S_{a}\right)}{2 L B_{1}^{2}} \leq \frac{2(4 G+3 j+1)+4-G}{2(4 G+3 j+2)-3 G-2 j}=\frac{7 G+6 j+6}{5 G+4 j+4} \leq \frac{3}{2}
$$

Appendix E: Proof of Lemma 7

Proof of Lemma 7: We use the fact that if $q \in U_{8}$, then M_{q} is reloaded immediately after
it is unloaded. We can write the waiting time expressions for any $q \in U_{8}$ as follows:

$$
\begin{align*}
& w_{q}^{1}=\max \left\{0, \widehat{w_{q}^{1}}-\sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{2}-\sum_{\substack{j=1 \\
j \in U_{8}}}^{q-1} w_{j}^{1}\right\} \tag{9}\\
& w_{q}^{2}=\max \left\{0, \widehat{w_{q}^{2}}-\sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{1}-\sum_{\substack{j=1 \\
j \in U_{8}}}^{q-1} w_{j}^{2}\right\}, \tag{10}
\end{align*}
$$

where $\widehat{w_{q}^{1}}$ and $\widehat{w_{q}^{2}}$ are expressions of the form

$$
\begin{aligned}
& \widehat{w_{q}^{1}}=p_{q}-a \delta-b \epsilon-c \theta-\sum_{\substack{j=q+1 \\
j \in U_{5}}}^{m} p_{j}-\sum_{\substack{j=1 \\
j \in U_{6}}}^{m} p_{j}-\sum_{\substack{j=q+1 \\
j \in U_{7}}}^{m} p_{j}-2 \sum_{\substack{j=q+1 \\
j \in U_{9}}}^{m} p_{j} \\
& \widehat{w_{q}^{2}}=p_{q}-d \delta-e \epsilon-f \theta-\sum_{\substack{j=1 \\
j \in U_{5}}}^{q-1} p_{j}-\sum_{\substack{j=1 \\
j \in U_{6}}}^{m} p_{j}-\sum_{\substack{j=1 \\
j \in U_{7}}}^{q-1} p_{j}-2 \sum_{\substack{j=1 \\
j \in U_{9}}}^{q-1} p_{j},
\end{aligned}
$$

and $a, b, c, d, e, f \geq 0$ are constants. From (9) and (10) we get

$$
\begin{aligned}
& \sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{2}+\sum_{\substack{j=1 \\
j \in U_{8}}}^{q} w_{j}^{1}=\max \left\{\sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{2}+\sum_{\substack{j=1 \\
j \in U_{8}}}^{q-1} w_{j}^{1}, \widehat{w_{q}^{1}}\right\} \\
& \sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{1}+\sum_{\substack{j=1 \\
j \in U_{8}}}^{q} w_{j}^{2}=\max \left\{\sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{1}+\sum_{j \in U_{8}}^{q-1} w_{j}^{2}, \widehat{w_{q}^{2}}\right\}
\end{aligned}
$$

Therefore, if $w_{q}^{i}>0$, then $\widehat{w_{q}^{i}}$ is the robot's total partial waiting time while M_{q}^{i} is processing, $i=1,2$. These two equations also imply the following system of $2 u_{8}$ inequalities:

$$
\begin{align*}
& \sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{2}+\sum_{\substack{j=1 \\
j \in U_{8}}}^{q} w_{j}^{1} \geq \max \left\{0, \widehat{w_{q}^{1}}\right\}, q \in U_{8} \tag{11}\\
& \sum_{\substack{j=q+1 \\
j \in U_{8}}}^{m} w_{j}^{1}+\sum_{\substack{j=1 \\
j \in U_{8}}}^{q} w_{j}^{2} \geq \max \left\{0, \widehat{w_{q}^{2}}\right\}, q \in U_{8} . \tag{12}
\end{align*}
$$

Let $q^{\prime}=\operatorname{argmax}_{q \in U_{8}}\left\{\max \left\{0, \widehat{w_{q}^{1}}\right\}+\max \left\{0, \widehat{w_{q}^{2}}\right\}\right\}$. We show that $W=w_{q^{\prime}}^{1}+w_{q^{\prime}}^{2}$, where $w_{q^{\prime}}^{1}=\max \left\{0, \widehat{w_{q^{\prime}}^{1}}\right\}, w_{q^{\prime}}^{2}=\max \left\{0, \widehat{w_{q^{\prime}}^{2}}\right\}$, and $w_{q}^{1}=w_{q}^{2}=0$ for $q \neq q^{\prime}$, is a minimal solution to the system of inequalities (11) and (12). To prove this, we show that (a) $W \geq w_{q^{\prime}}^{1}+w_{q^{\prime}}^{2}$, and that (b) $W=w_{q^{\prime}}^{1}+w_{q^{\prime}}^{2}$ is a feasible solution to the system of inequalities (11) and (12):
a) That $W \geq w_{q^{\prime}}^{1}+w_{q^{\prime}}^{2}$ follows from summing inequalities (11) and (12) for $q=q^{\prime}$: $W=\sum_{\substack{j=q^{\prime}+1 \\ j \in U_{8}}}^{m} w_{j}^{2}+\sum_{\substack{j=1 \\ j \in U_{8}}}^{q^{\prime}} w_{j}^{1}+\sum_{\substack{j=q^{\prime}+1 \\ j \in U_{8}}}^{m} w_{j}^{1}+\sum_{\substack{j=1 \\ j \in U_{8}}}^{q^{\prime}} w_{j}^{2} \geq \max \left\{0, \widehat{w_{q^{\prime}}^{1}}\right\}+\max \left\{0, \widehat{w_{q^{\prime}}^{2}}\right\}$.
b) Suppose $q>q^{\prime}$. For (11) and (12) to be satisfied, we must have $w_{q^{\prime}}^{1} \geq \widehat{w_{q}^{1}}$ and $w_{q^{\prime}}^{2} \geq \widehat{w_{q}^{2}}$, which follow from (9) and (10):

$$
\begin{aligned}
& 0=w_{q}^{1}=\max \left\{0, \widehat{w_{q}^{1}}-w_{q^{\prime}}^{1}\right\} \Rightarrow w_{q^{\prime}}^{1} \geq \widehat{w_{q}^{1}} \\
& 0=w_{q}^{2}=\max \left\{0, \widehat{w_{q}^{2}}-w_{q^{\prime}}^{2}\right\} \Rightarrow w_{q^{\prime}}^{2} \geq \widehat{w_{q}^{2}} .
\end{aligned}
$$

If $q<q^{\prime}$, then we must have $w_{q^{\prime}}^{2} \geq \widehat{w_{q}^{1}}$ and $w_{q^{\prime}}^{1} \geq \widehat{w_{q}^{2}}$, which follow similarly from (9) and (10).

By Lemma 6, if $w_{q^{\prime}}^{1}>0$ and $w_{q^{\prime}}^{2}>0$, then S_{a} is optimal. Otherwise, $W=w_{q^{\prime}}^{i}>0$ and $w_{q^{\prime}}^{3-i}=0$, $i \in\{1,2\}$.

Appendix F: Proof of Theorem 3

Proof of Theorem 3: If $\max _{1 \leq i \leq m} p_{i} \geq(m+2) \delta+2 m \epsilon+(m-1) \theta$, then cycle S_{m}^{2} is optimal by Lemma 1. If $p_{i} \geq \delta, \forall i$, then cycle S_{m}^{2} is optimal by Lemma 3. If $p_{i} \leq(\delta+\theta) / 2$, $\forall i$, then cycle S_{o}^{2} is optimal by Lemma 4 . If $W=0$ in cycle S_{a}, then S_{a} provides a $3 / 2$-approximation to the optimal per unit cycle time by Lemma 5 .

We now analyze the case in which $W>0$ in cycle S_{a}. The proof of Lemma 7 shows that we need only to consider $W=w_{q}^{i}, q \in U_{8}$, where either $i=1$ or $i=2$. First suppose that $w_{q}^{1}>0$. In this case, we can find $T\left(S_{a}\right)$ by adding p_{q} and the times for robot actions and full waiting that occur between the start of the unloading of M_{q}^{1} and the completion of the loading of this usage.

We first compute the robot movement times in this expression for $T\left(S_{a}\right)$. After unloading M_{q}^{1}, rotating its grippers, and loading M_{q}^{2}, the robot travels to each machine $M_{j}, j>q$, $j \in U_{5} \cup U_{6} \cup U_{7} \cup U_{8}$, then to O (if $u_{1}=0$), to I, and to each machine M_{1}, \ldots, M_{q}, before unloading M_{q}^{2}, rotating its grippers, and reloading M_{q}^{1}. Hence, the total movement time in S_{a} is $\left(q+2-u_{1}+\left|\left\{j: j>q, j \in U_{5} \cup U_{6} \cup U_{7} \cup U_{8}\right\}\right|\right) \delta$.

Now consider the load/unload, gripper rotation, and full waiting times. For clarity, we explicitly calculate only the load/unload times within the text. After unloading M_{q}^{1} but before visiting I, the robot unloads each M_{j} for which $j \in U_{5}$ and $j>q$, and it loads each M_{j} for which $j \in U_{7}$ and $j>q$ (this requires time $\left|\left\{j: j>q, j \in U_{5} \cup U_{7}\right\}\right| \epsilon$). During this same segment of the cycle, the robot loads, waits, and unloads (respectively, unloads, rotates grippers, and loads) at each $M_{j}, j \in U_{6}$ (resp., $j \in U_{8}$), $j \geq q$ (time $2\left|\left\{j: j \geq q, U_{6} \cup U_{8}\right\}\right| \epsilon$). Before visiting I, the robot may load $O\left(\right.$ time $\left.\left(1-u_{1}\right) \epsilon\right)$. After visiting I (time $\left(1+u_{0}\right) \epsilon$) but before loading M_{q}^{1}, the robot loads, waits, unloads, rotates grippers, and reloads (respectively unloads, rotates grippers, reloads, waits, and unloads) at each $M_{i}, i \in U_{5}$ (resp., $i \in U_{7}$), $i<q$ (time $3\left|\left\{i: i<q, i \in U_{5} \cup U_{7}\right\}\right| \epsilon$). At each $M_{i}, i \in U_{6}$ (resp., $i \in U_{8}$), $i \leq q$, the robot loads, waits, and unloads (resp., unloads, rotates grippers, and loads) (time $2\left|\left\{i: i \leq q, U_{6} \cup U_{8}\right\}\right| \epsilon$). For each machine $M_{i}, i \in U_{9}, i<q$, the robot loads, waits, unloads, rotates grippers, reloads, waits, and unloads (time $4\left|\left\{i: i<q, i \in U_{9}\right\}\right| \epsilon$). This analysis generates the following cycle time expression if $W=w_{q}^{1}$:

$$
\begin{aligned}
T\left(S_{a}\right)= & p_{q}+\left(q+2-u_{1}+\left|\left\{j: j>q, j \in U_{5} \cup U_{6} \cup U_{7} \cup U_{8}\right\}\right|\right) \delta \\
& +\left[4\left|\left\{i: i<q, i \in U_{9}\right\}\right|+3\left|\left\{i: i<q, i \in U_{5} \cup U_{7}\right\}\right|+2\left(\left|\left\{U_{6} \cup U_{8}\right\}\right|+1\right)\right. \\
& \left.+\left|\left\{j: j>q, j \in U_{5} \cup U_{7}\right\}\right|+2+u_{0}-u_{1}\right] \epsilon \\
& +\left(\left|U_{8}\right|+\left|\left\{i: i<q, i \in U_{5} \cup U_{7} \cup U_{9}\right\}\right|+u_{0}+1\right) \theta \\
& +2 \sum_{\substack{i=1 \\
i \in U_{9}}}^{q-1} p_{i}+\sum_{\substack{i=1 \\
i \in U_{5} \cup U_{7}}}^{q-1} p_{i}+\sum_{i \in U_{6}} p_{i} .
\end{aligned}
$$

Note that $q+\left|\left\{j: j>q, j \in U_{5} \cup U_{6} \cup U_{7} \cup U_{8}\right\}\right| \leq m, u_{5}+u_{7}+u_{8}+u_{9} \leq m$, and $0 \leq u_{0}, u_{1} \leq 1$.

Thus,

$$
\begin{equation*}
T\left(S_{a}\right) \leq p_{q}+(m+2) \delta+4(m+1) \epsilon+(m+2) \theta+2 \sum_{i \notin U_{8}} p_{i} . \tag{13}
\end{equation*}
$$

We further bind $T\left(S_{a}\right)$ by binding p_{q} by using $L B_{2}^{2}$. If $T\left(S_{a}\right) / 2 L B_{2}^{2} \leq 3 / 2$, then the theorem is proven. Otherwise, $T\left(S_{a}\right)>3 p_{q}+3 \theta+6 \epsilon$, so, by (13), we have

$$
\begin{aligned}
3 p_{q}+3 \theta+6 \epsilon & <p_{q}+(m+2) \delta+4(m+1) \epsilon+(m+2) \theta+2 \sum_{i \notin U_{8}} p_{i} \\
p_{q} & <\frac{m+2}{2} \delta+(2 m-1) \epsilon+\frac{m-1}{2} \theta+\sum_{i \notin U_{8}} p_{i} \\
\Rightarrow T\left(S_{a}\right) & <\frac{3}{2}(m+2) \delta+(6 m+3) \epsilon+\frac{3}{2}(m+1) \theta+3 \sum_{i \notin U_{8}} p_{i} .
\end{aligned}
$$

Recall that

$$
\begin{aligned}
2 L B_{1}^{2} & =\left(2 m+2-\left|D_{2}^{c}\right|\right)(\delta+\theta)+4(m+1) \epsilon+2 \sum_{i \in D_{2}^{c}} p_{i} \\
& =\left(2 m+2-u_{5}-u_{6}-u_{7}-u_{9}\right)(\delta+\theta)+4(m+1) \epsilon+2 \sum_{i \notin U_{8}} p_{i} .
\end{aligned}
$$

Since $u_{5}+u_{6}+u_{7}+u_{9} \leq m-1$, it follows that

$$
2 L B_{1}^{2} \geq(m+3)(\delta+\theta)+4(m+1) \epsilon+2 \sum_{i \notin U_{8}} p_{i} .
$$

Therefore,

$$
\frac{T\left(S_{a}\right)}{L B_{1}^{2}}<\frac{\frac{3}{2}(m+2) \delta+(6 m+3) \epsilon+\frac{3}{2}(m+1) \theta+3 \sum_{i \notin U_{8}} p_{i}}{(m+3)(\delta+\theta)+4(m+1) \epsilon+2 \sum_{i \notin U_{8}} p_{i}}<\frac{3}{2} .
$$

The proof for $w_{q}^{2}>0$ is similar.
To demonstrate asymptotic tightness, let $p_{i}=\nu<(\delta+\theta) / 2$ for $i=1, \ldots, m-1$, and $p_{m}=\frac{m+1.9}{2} \delta+\frac{m-1}{2} \theta$. It follows that

$$
\begin{aligned}
T\left(S_{a}\right) & =p_{m}+(m+2) \delta+(4 m+2) \epsilon+(m+2) \theta+(2 m-3) \nu \\
& =\left(\frac{3}{2} m+2.95\right) \delta+(4 m+2) \epsilon+\frac{3}{2}(m-1) \theta+(2 m-3) \nu \\
2 L B_{1}^{2} & =(m+3)(\delta+\theta)+4(m+1) \epsilon+2(m-1) \nu \\
2 L B_{2}^{2} & =2 p_{m}+4 \epsilon+2 \theta=(m+1.9) \delta+4 \epsilon+(m+1) \theta .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \frac{T\left(S_{a}\right)}{2 L B_{1}^{2}}=\frac{\left(\frac{3}{2} m+2.95\right) \delta+(4 m+2) \epsilon+\frac{3}{2}(m-1) \theta+(2 m-3) \nu}{(m+3)(\delta+\theta)+4(m+1) \epsilon+2(m-1) \nu} \longrightarrow \frac{3}{2} \\
& \frac{T\left(S_{a}\right)}{2 L B_{2}^{2}}=\frac{\left(\frac{3}{2} m+2.95\right) \delta+(4 m+2) \epsilon+\frac{3}{2}(m-1) \theta+(2 m-3) \nu}{(m+1.9) \delta+4 \epsilon+(m+1) \theta} \longrightarrow \frac{3}{2}
\end{aligned}
$$

as $m \rightarrow \infty, \epsilon \rightarrow 0$, and $\nu \rightarrow 0$.

