Appendix A: Proof of Theorem 1

We first consider k even; the result for k odd easily follows. Let u_j denote the number of sequences σ corresponding to Case j that occur in a k-unit cycle, for all j and r (j = 2, 3, ..., 9, and $r = 1, ..., \frac{k}{2}$) and machines M_i , i = 1, ..., m. As there are $\frac{k}{2}$ sequences for each machine in a k-unit cycle, we have $\frac{mk}{2} = u_2 + u_3 + u_4 + u_5 + u_6 + u_7 + u_8 + u_9$. Let U_j be the collection of indices of machines in Case j. If a machine M_i has s sequences in Case j, then there will be s instances of i in U_j . u_0 (respectively, u_1) represents the number of visits to I (O) during which the robot unloads (loads) two parts.

By adding residence times corresponding to the possible cases for a machine in a dualgripper robot cell, we get a lower bound for T_r , the aggregate residence time of the robot at all machines for a k-unit cycle:

$$T_r \geq 2(m+1)k\epsilon + (u_0 + u_1 + u_4 + u_5 + u_7 + 2u_8 + u_9)\theta$$

 $+ \sum_{i \in U_3} p_i + \sum_{i \in U_5} p_i + 2\sum_{i \in U_6} p_i + \sum_{i \in U_7} p_i + 2\sum_{i \in U_9} p_i.$

The computation of required movement time is identical to that of Geismar et al. (2006):

$$T_t = (m+2)k\delta + (-u_0 - u_1 + 2u_2 + u_3 + u_4 - u_9)\delta.$$

Hence, we have lower bound $T_r + T_t$, which can be considered as a fixed amount $((m+2)k\delta + 2(m+1)k\epsilon)$ plus an amount that varies according to which case each sequence is assigned. This is represented for machines M_1, \ldots, M_m by the summation term in expression (1). Table 4 lists the minimum time added to the cycle time for each 2-unit sequence that is assigned to a particular case. The last term in expression (1) corresponds to the time added to the per unit cycle time if $u_0 = u_1 = 1$.

The added time for Case 5 or Case 7 is not included in the summation term because $p_i + \theta \ge \min\{2p_i, 2\theta\}$. Similarly, the added times for Cases 3 and 4 are not included because $p_i + \delta \ge \min\{2p_i, 2\delta\}$ and $\delta + \theta \ge \min\{2\delta, 2\theta\}$, respectively.

For k odd, a lower bound can be found by considering the cycle to be the concatenation of (k-1)/2 subsequences $(M_{i,2r-1}^\ell, \sigma_1, M_{i,2r-1}^u, \sigma_2, M_{i,2r}^\ell, \sigma_3, M_{i,2r}^u, \sigma_4)$, and a subsequence $(M_{i,k}^\ell, \sigma_1, M_{i,k}^u, \sigma_2)$. Note that a lower bound for robot actions in a subsequence $(M_{i,k}^\ell, \sigma_1, M_{i,k}^u, \sigma_2)$

Case	Added time
Case 0, $u_0 = 1$	$\theta - \delta$
Case 1, $u_1 = 1$	$\theta - \delta$
Case 2	2δ
Case 3	$p_i + \delta$
Case 4	$\delta + \theta$
Case 5	$p_i + \theta$
Case 6	$2p_i$
Case 7	$p_i + \theta$
Case 8	2θ
Case 9	$2p_i + \theta - \delta$

Table 4: Variable amount added to the cycle time for each case.

is $(m+2)\delta + 2(m+1)\epsilon + \sum_{i=1}^{m} \min\{p_i, \delta, \theta\}$, which is greater than or equal to the right-hand side of (1). Therefore, (1) is a lower bound for the per unit cycle time for k odd, too.

Appendix B: Proofs of Lemmas 1 through 4

Proof of Lemma 1:

- a) If $\max p_i \geq (m+2)\delta + 2m\epsilon + (m-1)\theta$, then $S_m^2 = p_h + 2\epsilon + \theta$, which is a lower bound on the per unit cycle time of a dual-gripper robot cell (Geismar et al. 2006). The condition $\theta \leq 3\delta + 2\epsilon$ ensures that $p_h + 2\epsilon + \theta \leq p_h + 3\delta + 4\epsilon$, which is a lower bound for the per unit cycle time of a single-gripper robot cell (Dawande et al. 2002).
- b) $p_h \ge (m+2)\delta + 2m\epsilon + (m-1)\theta$ and $\theta \ge 3\delta + 2\epsilon$ imply that $\pi_D = p_h + 3\delta + 4\epsilon \le p_h + 2\epsilon + \theta$, so π_D is optimal over all single-gripper and dual-gripper cycles.

Proof of Lemma 2:

- a) $\Omega^1 \ge p_h + 3\delta + 4\epsilon = T(\pi_D)$.
- b) $T(\pi_D) = p_h + 3\delta + 4\epsilon \le p_h + 2\epsilon + \theta \le \Omega^2$.
- c) $\Omega^2 \ge p_h + 2\epsilon + \theta = T(\pi_D) (3\delta + 2\epsilon \theta).$

The condition $\theta \leq 3\delta + 2\epsilon$ implies that the fraction

$$T(\pi_D) \le \frac{p_h + 3\delta + 4\epsilon}{p_h + 2\epsilon + \theta} \Omega^2$$

is maximized by minimizing p_h . Therefore

$$T(\pi_D) \le \frac{2(m+1)(\delta+\epsilon)}{(2m-1)\delta+2m\epsilon+\theta}\Omega^2 \le \frac{2(m+1)(\delta+\epsilon)}{2m(\delta+\epsilon)}\Omega^2 = \frac{m+1}{m}\Omega^2.$$

d) Either S_m^2 is optimal (by Lemma 1) or $T(S_m^2) = (m+2)\delta + 2(m+1)\epsilon + m\theta \le 2(m+1)(\delta + \epsilon) \le p_h + 3\delta + 4\epsilon \le \Omega^1$. Therefore

$$T(S_m^2) \le \frac{2(m+1)(\delta+\epsilon)}{(2m-1)\delta + 2m\epsilon + \theta} \Omega^2 \le \frac{2(m+1)(\delta+\epsilon)}{(2m-1)\delta + 2m\epsilon} \Omega^2 \le \frac{2m+2}{2m-1} \Omega^2.$$

Proof of Lemma 3: If $\theta \leq \delta \leq p_i$, $\forall i$, then either S_m^2 is optimal (by Lemma 1) or $T(S_m^2) = (m+2)\delta + 2(m+1)\epsilon + m\theta \leq 2(m+1)(\delta+\epsilon) \leq \Omega^1$. That $\theta \leq \delta \leq p_i$, $\forall i$, implies $T(S_m^2) = \Omega^2$ is proven in Geismar et al. (2006). If $\delta \leq \theta$, and $p_h \leq (2m-1)\delta + 2(m-1)\epsilon$, then $T(\pi_D) = 2(m+1)(\delta+\epsilon) \leq (m+1)(\delta+2\epsilon+\theta) \leq \Omega^2$. That $p_i \geq \delta$, $\forall i$, implies $T(\pi_D) = \Omega^1$ is proven in Dawande et al. (2002).

Proof of Lemma 4: Geismar et al. (2006) show that S_o^2 is optimal over all dual-gripper cycles for $p_i \leq (\delta + \theta)/2, \forall i$. Dawande et al. (2002) show that π_U is optimal over all single-gripper cycles for $p_i \leq \delta, \forall i$. Recall that S_o^2 is a 2-unit cycle. If $\theta \leq \delta$, then

$$\frac{T(S_o^2)}{2} = \frac{(m+2)}{2}\delta + 2(m+1)\epsilon + \frac{(m+2)}{2}\theta + \sum_{i=1}^m p_i \le (m+2)\delta + 2(m+1)\epsilon + \sum_{i=1}^m p_i = \Omega^1$$

If $\delta \leq \theta$, then

$$T(\pi_U) = (m+2)\delta + 2(m+1)\epsilon + \sum_{i=1}^m p_i \le \frac{(m+2)}{2}\delta + 2(m+1)\epsilon + \frac{(m+2)}{2}\theta + \sum_{i=1}^m p_i = \Omega^2 \blacksquare$$

Appendix C: Proof of Theorem 2

Proof of Theorem 2:

Step 1: If $p_i \leq \delta$, $\forall i$, then π_U is optimal by Lemma 4.

Step 2: If $\max_{1 \le i \le m} p_i + 3\delta + 4\epsilon \ge 2(m+1)(\delta + \epsilon)$, then π_D is optimal by Lemma 2

Step 3: If $p_i \geq \delta$, $\forall i$, then π_D is optimal by Lemma 3.

Step 4: If $|D_{\delta}| \geq \frac{5m-4}{9}$, then, from (3), we have

$$\Omega^{1} \geq \left[m + \frac{5m - 4}{9} + 2\right] \delta + 2(m + 1)\epsilon + \sum_{i \in D_{\delta}^{c}} p_{i}$$
$$\geq \left(\frac{14}{9}m + \frac{14}{9}\right) \delta + 2(m + 1)\epsilon.$$

Thus,

$$T(\pi_D) = 2(m+1)(\delta + \epsilon) \le \frac{2(m+1)(\delta + \epsilon)}{(\frac{14}{9}m + \frac{14}{9})\delta + 2(m+1)\epsilon} \Omega^1 \le \frac{9}{7}\Omega^1.$$

We now show tightness. Suppose m=8, $p_1=p_3=p_5=p_7=2\delta$, and $p_2=p_4=p_6=p_8=\nu<\delta$. An optimal cycle is the basic cycle based on the initial partition: $\pi_1=(A_0,A_7,A_8,A_5,A_6,A_3,A_4,A_1,A_2),\ T(\pi_1)=LB_1^1=14\delta+18\epsilon+4\nu$. Algorithm CCell2 outputs π_D , and $T(\pi_D)=18(\delta+\epsilon)$. Therefore, $T(\pi_D)/T(\pi_1)\to 9/7$ as $\epsilon\to 0$ and $\nu\to 0$.

Step 5: The structure of V_2 and that $|D_{\delta}| \leq \frac{m+2}{6}$ imply that

$$|V_2| \le 3|D_{\delta}| \le \frac{m+2}{2}$$
, so
 $\alpha \le \frac{\left(m + \frac{m+2}{2} + 2\right)\delta + 2(m+1)\epsilon + \sum_{i \in V_1} p_i}{(m+|D_{\delta}|+2)\delta + 2(m+1)\epsilon + \sum_{i \in D_{\delta}^c} p_i} \Omega^1$.
 $\le \frac{\frac{3}{2}(m+2)}{\frac{7}{6}(m+2)} \Omega^1 = \frac{9}{7} \Omega^1$.

We now investigate the value of β_i , $i \in V_2$:

- 1. By construction, for $i \in D_{\delta}$, $\beta_i = p_i + 3\delta + 4\epsilon$. By (4), if $T(\widetilde{\pi}_B) = p_i + 3\delta + 4\epsilon$ for some i, then $\widetilde{\pi}_B$ is optimal.
- 2. For $i \in V_2 \setminus D_\delta$, $\beta_i = p_i + 3\delta + 4\epsilon + \sum_{j \in X_i \cup Y_i} (p_j + \delta + 2\epsilon)$. Since $i \in D^c_\delta$, $X_i \subset D^c_\delta$, and $Y_i \subset D^c_\delta$, we know that $p_i + \sum_{j \in X_i \cup Y_i} p_j \leq \sum_{j \in D^c_\delta} p_j$. Cycle $\widetilde{\pi}_B$ was designed so that $|V_2| \geq 2$. This implies that $|X_i \cup Y_i| \leq m 2$. Hence,

$$\beta_i \leq \sum_{j \in D_{\delta}^c} p_j + 3\delta + 4\epsilon + (m-2)(\delta + 2\epsilon)$$
$$= \sum_{j \in D_{\delta}^c} p_j + (m+1)\delta + 2m\epsilon, \ i \in V_2 \setminus D_{\delta}.$$

This value is strictly less than LB_1^1 . Hence, $\beta_i, i \in V_2 \setminus D_\delta$, will not dominate the cycle time expression.

Step 6: We show that $\alpha/LB_1^1 \leq \frac{9}{7}$ by first proving that

$$|V_2 \setminus D_{\delta}| \le \frac{2}{7}(m + |D_{\delta}| + 2),\tag{6}$$

i.e., by establishing a bound on the number of elements of D_{δ}^c that the algorithm places into V_2 . The largest value for $|V_2 \setminus D_{\delta}|$ is obtained by maximizing the number of elements $i \in D_{\delta}$ for which $|Y_i| > \frac{9}{56}(m + |D_{\delta}| + 2) + 1$. For each such i, two elements of Y_i (the first and the last) will be added to $V_2 \setminus D_{\delta}$. For example, consider the cell in Figure 5: m = 12, $D_{\delta} = \{1, 6, 11, 12\}$, so $|D_{\delta}| = 4$ and $\frac{9}{56}(m + |D_{\delta}| + 2) + 1 = 3.89$. $|Y_1| = |Y_6| = 4$, so indices 2, 5, 7, and 10 will be added to V_2 . In general, such a maximal $|V_2 \setminus D_{\delta}|$ is

Figure 5: Example of cell with maximal $|V_2 \setminus D_{\delta}|$.

formed in an m-machine cell if

$$D_{\delta} = \left\{ 1, \ 2 + \left\lfloor \frac{9}{56} (m + |D_{\delta}| + 2) + 2 \right\rfloor, \\ 3 + 2 \left\lfloor \frac{9}{56} (m + |D_{\delta}| + 2) + 2 \right\rfloor, \\ \vdots \\ z + (z - 1) \left\lfloor \frac{9}{56} (m + |D_{\delta}| + 2) + 2 \right\rfloor, \\ z + (z - 1) \left\lfloor \frac{9}{56} (m + |D_{\delta}| + 2) + 2 \right\rfloor + 1, \dots, m \right\}.$$

Note that this uniquely defines the integer z as

$$z = \left\lceil \frac{m}{\left\lfloor \frac{9}{56}(m + |D_{\delta}| + 2) + 3 \right\rfloor} \right\rceil$$

and the size of D_{δ} as

$$|D_{\delta}| = m - (z - 1) \left| \frac{9}{56} (m + |D_{\delta}| + 2) + 2 \right|.$$

 $(z=3 \text{ and } |D_{\delta}|=4 \text{ for the example in Figure 5.})$ In such a cell, $|V_2 \setminus D_{\delta}|=2(z-1)$, where $|Y_{i_j}|=\left\lfloor\frac{9}{56}(m+|D_{\delta}|+2)+2\right\rfloor$ for $i_j\in D_{\delta},\ j=1,\ldots,z-1$, and $|Y_{i_j}|=0$, for $i_j\in D_{\delta},\ j=z,\ldots,|D_{\delta}|$, and $|X_{i_1}|=0$. Thus, there are z-1 intervals in which the first machine is an element of D_{δ} and the next $\left\lfloor\frac{9}{56}(m+|D_{\delta}|+2)+2\right\rfloor$ machines are elements of D_{δ}^c . (In Figure 5, M_1 and M_6 are elements of D_{δ} that are each followed by four elements of D_{δ}^c .) The final $|D_{\delta}|-z+1$ machines (M_{11},M_{12}) are elements of D_{δ} . Hence, this requires that there are at least $(z-1)\left\lfloor\left(\frac{9}{56}(m+|D_{\delta}|+2)+3\right)\right\rfloor+|D_{\delta}|-z+1=(z-1)\left\lfloor\left(\frac{9}{56}(m+|D_{\delta}|+2)+2\right)\right\rfloor+|D_{\delta}|$ machines in the cell. To prove (6) we must show that our algorithm cannot add another machine to $V_2 \setminus D_{\delta}$, if $2(z-1)=\frac{2}{7}(m+|D_{\delta}|+2)$. For the algorithm to add another machine to $V_2 \setminus D_{\delta}$, there must be an additional $\left\lfloor\frac{9}{56}(m+|D_{\delta}|+2)+1\right\rfloor$ elements of D_{δ}^c between any pair of the last $|D_{\delta}|-z+1$ elements of D_{δ} . We claim that such a configuration is infeasible. If it were feasible, then

$$(z-1)\left[\left(\frac{9}{56}(m+|D_{\delta}|+2)+2\right)\right] + |D_{\delta}| + \left[\frac{9}{56}(m+|D_{\delta}|+2)+1\right] \leq m$$

$$\Rightarrow (z-1)\left(\frac{9}{56}(m+|D_{\delta}|+2)+1\right) + |D_{\delta}| + \frac{9}{56}(m+|D_{\delta}|+2) \leq m. \quad (7)$$

Because $|D_{\delta}| > \frac{m+2}{6}$, we have $m + |D_{\delta}| + 2 > \frac{7}{6}(m+2)$ and $z - 1 = \frac{1}{7}(m + |D_{\delta}| + 2) > \frac{m+2}{6}$. Thus, (7) must satisfy

$$\frac{m+2}{6} \left(\frac{9}{56} \cdot \frac{7}{6} (m+2) + 1 \right) + \frac{m+2}{6} + \frac{9}{56} \cdot \frac{7}{6} (m+2) \le m$$

$$(m+2)(3m+22) + 34(m+2) \le 96m$$

$$3m^2 - 34m + 112 \le 0,$$

which is a contradiction. Therefore, $|V_2 \setminus D_{\delta}| \leq \frac{2}{7}(m + |D_{\delta}| + 2)$.

Thus,

$$\frac{\alpha}{LB_1^1} \leq \frac{(m+|D_{\delta}|+\frac{2}{7}(m+|D_{\delta}|+2)+2)\delta+2(m+1)\epsilon+\sum_{j\in V_1} p_j}{(m+|D_{\delta}|+2)\delta+2(m+1)\epsilon+\sum_{j\in D_{\delta}^c} p_j}$$

$$\leq \frac{\frac{9}{7}(m+|D_{\delta}|+2)}{m+|D_{\delta}|+2} = \frac{9}{7}.$$

We now show that $\beta_i \leq \frac{9}{7} \max\{LB_1^1, LB_2^1\}$, for all $i \in V_2$. First, either $\beta_i \leq \frac{9}{7}LB_2^1$ or

$$\frac{\beta_i}{LB_2^1} = \frac{p_i + 3\delta + 4\epsilon + \sum_{j \in X_i \cup Y_i} (p_j + \delta + 2\epsilon)}{p_i + 3\delta + 4\epsilon} > \frac{9}{7}$$

$$\Leftrightarrow 7 \sum_{j \in X_i \cup Y_i} (p_j + \delta + 2\epsilon) > 2(p_i + 3\delta + 4\epsilon).$$

Therefore,

$$\frac{\beta_{i}}{LB_{1}^{1}} \leq \frac{\frac{9}{2} \sum_{j \in X_{i} \cup Y_{i}} (p_{j} + \delta + 2\epsilon)}{(m + |D_{\delta}| + 2)\delta + 2(m + 1)\epsilon + \sum_{i \in D_{\delta}^{c}} p_{i}}$$

$$= \frac{\sum_{j \in X_{i} \cup Y_{i}} (\frac{7}{2}p_{j} + \frac{9}{2}(\delta + 2\epsilon)) + \sum_{j \in X_{i} \cup Y_{i}} p_{j}}{(m + |D_{\delta}| + 2)\delta + 2(m + 1)\epsilon + \sum_{i \in D_{\delta}^{c}} p_{i}}$$

$$\leq \frac{\sum_{j \in X_{i} \cup Y_{i}} (\frac{7}{2}p_{j} + \frac{9}{2}(\delta + 2\epsilon))}{(m + |D_{\delta}| + 2)\delta + 2(m + 1)\epsilon} [X_{i} \cup Y_{i} \subset D_{\delta}^{c}]$$

$$< \frac{|X_{i} \cup Y_{i}|(8\delta + 9\epsilon)}{(m + |D_{\delta}| + 2)\delta + 2(m + 1)\epsilon}. [p_{j} < \delta, \ j \in X_{i} \cup Y_{i}]$$

Because $|X_i \cup Y_i| \leq \frac{9}{56}(m + |D_{\delta}| + 2)$, for $i \in D_{\delta}$, and $|D_{\delta}| < \frac{5m-4}{9}$ (by Step 4),

$$\frac{\beta_i}{LB_1^1} \le \frac{(m+|D_{\delta}|+2)(8 \cdot \frac{9}{56}\delta + 9 \cdot \frac{9}{56}\epsilon)}{(m+|D_{\delta}|+2)\delta + 2(m+1)\epsilon} \le \frac{9}{7}.$$

Appendix D: Proof of Lemma 5

Proof of Lemma 5: We find the worst case bound and show that it is less than or equal to 3/2. The coefficient of θ in $T(S_a)$ (equation (5)) cannot be greater than its coefficient in $2LB_1^2$, so the largest value for $T(S_a)/2LB_1^2$ occurs when $\theta = 0$. Since $D_2^c = U_5 \cup U_6 \cup U_7 \cup U_9$ in cycle

 S_a , we have

$$\frac{T(S_a)}{2LB_1^2} \leq \frac{(2m+4-u_0-u_1-u_9)\delta+4(m+1)\epsilon+\sum_{i\in U_5\cup U_7} p_i+2\sum_{i\in U_6\cup U_9} p_i}{[2(m+1)-|D_2^c|]\delta+4(m+1)\epsilon+2\sum_{i\in D_2^c} p_i} \\
\leq \frac{2m+4-u_0-u_1-u_9}{2(m+1)-|D_2^c|}.$$
(8)

First consider the case in which $U_9 = \emptyset$. The following cell has the largest $|D_2^c|$ for which algorithm DGR-Cell assigns no machine to U_9 : m = 3k, $p_{3j-2} < (\delta + \theta)/2$, $p_{3j} < (\delta + \theta)/2$, $p_{3j-1} \ge (\delta + \theta)/2$ (but the p_{3j-1} are not large enough to cause positive partial waiting), $j = 1, \ldots, k$, so $|D_2| = k$ and $|D_2^c| = 2k$. Thus, this cell has k-1 runs with s = 2, plus $\{1, m\} \subset D_2^c$, so the algorithm makes the assignments $58668668 \cdots 86687$. Thus, bounding inequality (8) becomes

$$\frac{T(S_a)}{2LB_1^2} \ \le \ \frac{2m+2}{2(m+1)-|D_2^c|} \le \frac{6k+2}{4k+2} < \frac{3}{2}.$$

Now suppose $U_9 \neq \emptyset$. If a run with length $s \geq 2$ begins at $r_1 = 1$ or ends at $r_G + s_G - 1 = m$, then s-1 elements (i.e., at minimum one-half of the elements) of that run are placed into U_9 . For any other run with length $s \geq 3$, s-2 elements (i.e., at minimum one-third of the elements) of that run are placed into U_9 . Therefore, because we want to maximize $|D_2^c| - u_9$, we consider only those runs with s=3 and $r_1 \neq 1$, $r_G + s_G - 1 \neq m$. In each of these G runs, for $g=1,\ldots,G$, we have $r_g \in U_7$, $r_{g+1} \in U_9$, $r_{g+2} \in U_5$; $r_{g+3} \in U_8$ to separate the runs. Hence, the cell that maximizes $|D_2^c| - u_9$ and therefore has the largest value for (8) causes algorithm DGR-Cell to make case assignments so that the cycle begins with one trio assigned 586 and $\ell-1$ trios assigned 686, has a machine in Case 8 (to separate the runs), then has G quartets assigned 7958, and concludes with $j-\ell-1$ trios assigned 686 and one trio assigned 687. Therefore, m=4G+3j+1, $|D_2^c|=3G+2j$, $u_9=G$, so

$$\frac{T(S_a)}{2LB_1^2} \le \frac{2(4G+3j+1)+4-G}{2(4G+3j+2)-3G-2j} = \frac{7G+6j+6}{5G+4j+4} \le \frac{3}{2}.$$

Appendix E: Proof of Lemma 7

Proof of Lemma 7: We use the fact that if $q \in U_8$, then M_q is reloaded immediately after

it is unloaded. We can write the waiting time expressions for any $q \in U_8$ as follows:

$$w_q^1 = \max \left\{ 0, \widehat{w_q^1} - \sum_{\substack{j=q+1\\j \in U_8}}^m w_j^2 - \sum_{\substack{j=1\\j \in U_8}}^{q-1} w_j^1 \right\}$$
 (9)

$$w_q^2 = \max \left\{ 0, \widehat{w_q^2} - \sum_{\substack{j=q+1\\j \in U_8}}^m w_j^1 - \sum_{\substack{j=1\\j \in U_8}}^{q-1} w_j^2 \right\}, \tag{10}$$

where $\widehat{w_q^1}$ and $\widehat{w_q^2}$ are expressions of the form

$$\widehat{w_q^1} = p_q - a\delta - b\epsilon - c\theta - \sum_{\substack{j=q+1\\j \in U_5}}^m p_j - \sum_{\substack{j=1\\j \in U_6}}^m p_j - \sum_{\substack{j=q+1\\j \in U_7}}^m p_j - 2\sum_{\substack{j=q+1\\j \in U_9}}^m p_j$$

$$\widehat{w_q^2} = p_q - d\delta - e\epsilon - f\theta - \sum_{\substack{j=1\\j \in U_5}}^{q-1} p_j - \sum_{\substack{j=1\\j \in U_6}}^m p_j - \sum_{\substack{j=1\\j \in U_7}}^{q-1} p_j - 2\sum_{\substack{j=1\\j \in U_9}}^{q-1} p_j,$$

and $a, b, c, d, e, f \ge 0$ are constants. From (9) and (10) we get

$$\sum_{\substack{j=q+1\\j\in U_8}}^m w_j^2 + \sum_{\substack{j=1\\j\in U_8}}^q w_j^1 = \max\left\{\sum_{\substack{j=q+1\\j\in U_8}}^m w_j^2 + \sum_{\substack{j=1\\j\in U_8}}^{q-1} w_j^1, \widehat{w_q^1}\right\}$$

$$\sum_{\substack{j=q+1\\j\in U_8}}^m w_j^1 + \sum_{\substack{j=1\\j\in U_8}}^q w_j^2 = \max\left\{\sum_{\substack{j=q+1\\j\in U_8}}^m w_j^1 + \sum_{\substack{j=1\\j\in U_8}}^{q-1} w_j^2, \widehat{w_q^2}\right\}.$$

Therefore, if $w_q^i > 0$, then $\widehat{w_q^i}$ is the robot's total partial waiting time while M_q^i is processing, i = 1, 2. These two equations also imply the following system of $2u_8$ inequalities:

$$\sum_{\substack{j=q+1\\j\in U_8}}^m w_j^2 + \sum_{\substack{j=1\\j\in U_8}}^q w_j^1 \ge \max\left\{0, \widehat{w_q^1}\right\}, \quad q \in U_8, \tag{11}$$

$$\sum_{\substack{j=q+1\\j\in U_8}}^m w_j^1 + \sum_{\substack{j=1\\j\in U_8}}^q w_j^2 \ge \max\left\{0, \widehat{w_q^2}\right\}, \quad q \in U_8.$$
 (12)

Let $q' = \operatorname{argmax}_{q \in U_8} \left\{ \max\{0, \widehat{w_q^1}\} + \max\{0, \widehat{w_q^2}\} \right\}$. We show that $W = w_{q'}^1 + w_{q'}^2$, where $w_{q'}^1 = \max\{0, \widehat{w_{q'}^1}\}$, $w_{q'}^2 = \max\{0, \widehat{w_{q'}^2}\}$, and $w_q^1 = w_q^2 = 0$ for $q \neq q'$, is a minimal solution to the system of inequalities (11) and (12). To prove this, we show that (a) $W \geq w_{q'}^1 + w_{q'}^2$, and that (b) $W = w_{q'}^1 + w_{q'}^2$ is a feasible solution to the system of inequalities (11) and (12):

a) That $W \ge w_{q'}^1 + w_{q'}^2$ follows from summing inequalities (11) and (12) for q = q':

$$W = \sum_{\substack{j=q'+1\\j\in U_8}}^m w_j^2 + \sum_{\substack{j=1\\j\in U_8}}^{q'} w_j^1 + \sum_{\substack{j=q'+1\\j\in U_8}}^m w_j^1 + \sum_{\substack{j=1\\j\in U_8}}^{q'} w_j^2 \ge \max\left\{0, \widehat{w_{q'}^1}\right\} + \max\left\{0, \widehat{w_{q'}^2}\right\}.$$

b) Suppose q > q'. For (11) and (12) to be satisfied, we must have $w_{q'}^1 \ge \widehat{w_q}^1$ and $w_{q'}^2 \ge \widehat{w_q}^2$, which follow from (9) and (10):

$$\begin{split} 0 &= & w_q^1 &= \max\left\{0, \widehat{w_q^1} - w_{q'}^1\right\} \Rightarrow w_{q'}^1 \geq \widehat{w_q^1} \\ 0 &= & w_q^2 &= \max\left\{0, \widehat{w_q^2} - w_{q'}^2\right\} \Rightarrow w_{q'}^2 \geq \widehat{w_q^2}. \end{split}$$

If q < q', then we must have $w_{q'}^2 \ge \widehat{w_q^1}$ and $w_{q'}^1 \ge \widehat{w_q^2}$, which follow similarly from (9) and (10).

By Lemma 6, if $w_{q'}^1 > 0$ and $w_{q'}^2 > 0$, then S_a is optimal. Otherwise, $W = w_{q'}^i > 0$ and $w_{q'}^{3-i} = 0$, $i \in \{1, 2\}$.

Appendix F: Proof of Theorem 3

Proof of Theorem 3: If $\max_{1 \leq i \leq m} p_i \geq (m+2)\delta + 2m\epsilon + (m-1)\theta$, then cycle S_m^2 is optimal by Lemma 1. If $p_i \geq \delta, \forall i$, then cycle S_m^2 is optimal by Lemma 3. If $p_i \leq (\delta + \theta)/2$, $\forall i$, then cycle S_o^2 is optimal by Lemma 4. If W = 0 in cycle S_a , then S_a provides a 3/2-approximation to the optimal per unit cycle time by Lemma 5.

We now analyze the case in which W > 0 in cycle S_a . The proof of Lemma 7 shows that we need only to consider $W = w_q^i$, $q \in U_8$, where either i = 1 or i = 2. First suppose that $w_q^1 > 0$. In this case, we can find $T(S_a)$ by adding p_q and the times for robot actions and full waiting that occur between the start of the unloading of M_q^1 and the completion of the loading of this usage.

We first compute the robot movement times in this expression for $T(S_a)$. After unloading M_q^1 , rotating its grippers, and loading M_q^2 , the robot travels to each machine M_j , j > q, $j \in U_5 \cup U_6 \cup U_7 \cup U_8$, then to O (if $u_1 = 0$), to I, and to each machine M_1, \ldots, M_q , before unloading M_q^2 , rotating its grippers, and reloading M_q^1 . Hence, the total movement time in S_a is $(q + 2 - u_1 + |\{j : j > q, j \in U_5 \cup U_6 \cup U_7 \cup U_8\}|)\delta$.

Now consider the load/unload, gripper rotation, and full waiting times. For clarity, we explicitly calculate only the load/unload times within the text. After unloading M_q^1 but before visiting I, the robot unloads each M_j for which $j \in U_5$ and j > q, and it loads each M_j for which $j \in U_7$ and j > q (this requires time $|\{j: j > q, j \in U_5 \cup U_7\}|\epsilon$). During this same segment of the cycle, the robot loads, waits, and unloads (respectively, unloads, rotates grippers, and loads) at each M_j , $j \in U_6$ (resp., $j \in U_8$), $j \geq q$ (time $2|\{j: j \geq q, U_6 \cup U_8\}|\epsilon$). Before visiting I, the robot may load O (time $(1-u_1)\epsilon$). After visiting I (time $(1+u_0)\epsilon$) but before loading M_q^1 , the robot loads, waits, unloads, rotates grippers, and reloads (respectively unloads, rotates grippers, reloads, waits, and unloads) at each M_i , $i \in U_5$ (resp., $i \in U_7$), i < q (time $3|\{i: i < q, i \in U_5 \cup U_7\}|\epsilon$). At each M_i , $i \in U_6$ (resp., $i \in U_8$), $i \leq q$, the robot loads, waits, and unloads (resp., unloads, rotates grippers, and loads) (time $2|\{i: i \leq q, U_6 \cup U_8\}|\epsilon$). For each machine M_i , $i \in U_9$, i < q, the robot loads, waits, unloads, rotates grippers, reloads, waits, and unloads (time $4|\{i: i < q, i \in U_9\}|\epsilon$). This analysis generates the following cycle time expression if $W = w_q^1$:

$$T(S_{a}) = p_{q} + (q + 2 - u_{1} + |\{j : j > q, j \in U_{5} \cup U_{6} \cup U_{7} \cup U_{8}\}|)\delta$$

$$+[4|\{i : i < q, i \in U_{9}\}| + 3|\{i : i < q, i \in U_{5} \cup U_{7}\}| + 2(|\{U_{6} \cup U_{8}\}| + 1)$$

$$+|\{j : j > q, j \in U_{5} \cup U_{7}\}| + 2 + u_{0} - u_{1}]\epsilon$$

$$+(|U_{8}| + |\{i : i < q, i \in U_{5} \cup U_{7} \cup U_{9}\}| + u_{0} + 1)\theta$$

$$+2 \sum_{\substack{i=1\\i \in U_{9}}}^{q-1} p_{i} + \sum_{\substack{i=1\\i \in U_{5} \cup U_{7}}}^{q-1} p_{i} + \sum_{\substack{i \in U_{6}}}^{q-1} p_{i}.$$

Note that $q + |\{j : j > q, j \in U_5 \cup U_6 \cup U_7 \cup U_8\}| \le m, u_5 + u_7 + u_8 + u_9 \le m, \text{ and } 0 \le u_0, u_1 \le 1.$

Thus,

$$T(S_a) \le p_q + (m+2)\delta + 4(m+1)\epsilon + (m+2)\theta + 2\sum_{i \notin U_8} p_i.$$
 (13)

We further bind $T(S_a)$ by binding p_q by using LB_2^2 . If $T(S_a)/2LB_2^2 \leq 3/2$, then the theorem is proven. Otherwise, $T(S_a) > 3p_q + 3\theta + 6\epsilon$, so, by (13), we have

$$3p_{q} + 3\theta + 6\epsilon < p_{q} + (m+2)\delta + 4(m+1)\epsilon + (m+2)\theta + 2\sum_{i \notin U_{8}} p_{i}$$

$$p_{q} < \frac{m+2}{2}\delta + (2m-1)\epsilon + \frac{m-1}{2}\theta + \sum_{i \notin U_{8}} p_{i}$$

$$\Rightarrow T(S_{a}) < \frac{3}{2}(m+2)\delta + (6m+3)\epsilon + \frac{3}{2}(m+1)\theta + 3\sum_{i \notin U_{6}} p_{i}.$$

Recall that

$$2LB_1^2 = (2m+2-|D_2^c|)(\delta+\theta) + 4(m+1)\epsilon + 2\sum_{i\in D_2^c} p_i$$
$$= (2m+2-u_5-u_6-u_7-u_9)(\delta+\theta) + 4(m+1)\epsilon + 2\sum_{i\notin U_8} p_i.$$

Since $u_5 + u_6 + u_7 + u_9 \le m - 1$, it follows that

$$2LB_1^2 \geq (m+3)(\delta+\theta) + 4(m+1)\epsilon + 2\sum_{i \neq U_8} p_i.$$

Therefore,

$$\frac{T(S_a)}{LB_1^2} < \frac{\frac{3}{2}(m+2)\delta + (6m+3)\epsilon + \frac{3}{2}(m+1)\theta + 3\sum_{i \notin U_8} p_i}{(m+3)(\delta+\theta) + 4(m+1)\epsilon + 2\sum_{i \notin U_8} p_i} < \frac{3}{2}.$$

The proof for $w_q^2 > 0$ is similar.

To demonstrate asymptotic tightness, let $p_i = \nu < (\delta + \theta)/2$ for $i = 1, \dots, m-1$, and $p_m = \frac{m+1.9}{2}\delta + \frac{m-1}{2}\theta$. It follows that

$$T(S_a) = p_m + (m+2)\delta + (4m+2)\epsilon + (m+2)\theta + (2m-3)\nu$$

$$= \left(\frac{3}{2}m + 2.95\right)\delta + (4m+2)\epsilon + \frac{3}{2}(m-1)\theta + (2m-3)\nu,$$

$$2LB_1^2 = (m+3)(\delta+\theta) + 4(m+1)\epsilon + 2(m-1)\nu$$

$$2LB_2^2 = 2p_m + 4\epsilon + 2\theta = (m+1.9)\delta + 4\epsilon + (m+1)\theta.$$

Therefore,

$$\frac{T(S_a)}{2LB_1^2} = \frac{\left(\frac{3}{2}m + 2.95\right)\delta + (4m+2)\epsilon + \frac{3}{2}(m-1)\theta + (2m-3)\nu}{(m+3)(\delta+\theta) + 4(m+1)\epsilon + 2(m-1)\nu} \longrightarrow \frac{3}{2}$$

$$\frac{T(S_a)}{2LB_2^2} \ = \ \frac{\left(\frac{3}{2}m + 2.95\right)\delta + (4m+2)\epsilon + \frac{3}{2}(m-1)\theta + (2m-3)\nu}{(m+1.9)\delta + 4\epsilon + (m+1)\theta} \longrightarrow \frac{3}{2}$$

as $m \to \infty$, $\epsilon \to 0$, and $\nu \to 0$.