
Appendix A: Proof of Theorem 1

We first consider k even; the result for k odd easily follows. Let uj denote the number of

sequences σ corresponding to Case j that occur in a k-unit cycle, for all j and r (j = 2, 3, . . . , 9,

and r = 1, . . . , k
2
) and machines Mi, i = 1, . . . ,m. As there are k

2
sequences for each machine in

a k-unit cycle, we have mk
2

= u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9. Let Uj be the collection of

indices of machines in Case j. If a machine Mi has s sequences in Case j, then there will be s

instances of i in Uj. u0 (respectively, u1) represents the number of visits to I (O) during which

the robot unloads (loads) two parts.

By adding residence times corresponding to the possible cases for a machine in a dual-

gripper robot cell, we get a lower bound for Tr, the aggregate residence time of the robot at all

machines for a k-unit cycle:

Tr ≥ 2(m + 1)kε + (u0 + u1 + u4 + u5 + u7 + 2u8 + u9)θ

+
∑
i∈U3

pi +
∑
i∈U5

pi + 2
∑
i∈U6

pi +
∑
i∈U7

pi + 2
∑
i∈U9

pi.

The computation of required movement time is identical to that of Geismar et al. (2006):

Tt = (m + 2)kδ + (−u0 − u1 + 2u2 + u3 + u4 − u9)δ.

Hence, we have lower bound Tr + Tt, which can be considered as a fixed amount ((m + 2)kδ +

2(m+1)kε) plus an amount that varies according to which case each sequence is assigned. This

is represented for machines M1, . . . , Mm by the summation term in expression (1). Table 4

lists the minimum time added to the cycle time for each 2-unit sequence that is assigned to a

particular case. The last term in expression (1) corresponds to the time added to the per unit

cycle time if u0 = u1 = 1.

The added time for Case 5 or Case 7 is not included in the summation term because

pi + θ ≥ min{2pi, 2θ}. Similarly, the added times for Cases 3 and 4 are not included because

pi + δ ≥ min{2pi, 2δ} and δ + θ ≥ min{2δ, 2θ}, respectively.

For k odd, a lower bound can be found by considering the cycle to be the concatena-

tion of (k − 1)/2 subsequences (M �
i,2r−1, σ1,M

u
i,2r−1, σ2,M

�
i,2r, σ3,M

u
i,2r, σ4), and a subsequence

(M �
i,k, σ1,M

u
i,k, σ2). Note that a lower bound for robot actions in a subsequence (M �

i,k, σ1,M
u
i,k, σ2)
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Case Added time
Case 0, u0 = 1 θ − δ
Case 1, u1 = 1 θ − δ
Case 2 2δ
Case 3 pi + δ
Case 4 δ + θ
Case 5 pi + θ
Case 6 2pi

Case 7 pi + θ
Case 8 2θ
Case 9 2pi + θ − δ

Table 4: Variable amount added to the cycle time for each case.

is (m + 2)δ + 2(m + 1)ε +
∑m

i=1 min{pi, δ, θ}, which is greater than or equal to the right-hand

side of (1). Therefore, (1) is a lower bound for the per unit cycle time for k odd, too.

Appendix B: Proofs of Lemmas 1 through 4

Proof of Lemma 1:

a) If max pi ≥ (m + 2)δ + 2mε + (m− 1)θ, then S2
m = ph + 2ε + θ, which is a lower bound on

the per unit cycle time of a dual-gripper robot cell (Geismar et al. 2006). The condition

θ ≤ 3δ + 2ε ensures that ph + 2ε + θ ≤ ph + 3δ + 4ε, which is a lower bound for the per

unit cycle time of a single-gripper robot cell (Dawande et al. 2002).

b) ph ≥ (m+2)δ+2mε+(m−1)θ and θ ≥ 3δ+2ε imply that πD = ph +3δ+4ε ≤ ph +2ε+θ,

so πD is optimal over all single-gripper and dual-gripper cycles.

Proof of Lemma 2:

a) Ω1 ≥ ph + 3δ + 4ε = T (πD).

b) T (πD) = ph + 3δ + 4ε ≤ ph + 2ε + θ ≤ Ω2.

c) Ω2 ≥ ph + 2ε + θ = T (πD) − (3δ + 2ε − θ).

The condition θ ≤ 3δ + 2ε implies that the fraction

T (πD) ≤ ph + 3δ + 4ε

ph + 2ε + θ
Ω2

3



is maximized by minimizing ph. Therefore

T (πD) ≤ 2(m + 1)(δ + ε)

(2m − 1)δ + 2mε + θ
Ω2 ≤ 2(m + 1)(δ + ε)

2m(δ + ε)
Ω2 =

m + 1

m
Ω2.

d) Either S2
m is optimal (by Lemma 1) or T (S2

m) = (m + 2)δ + 2(m + 1)ε + mθ ≤ 2(m +

1)(δ + ε) ≤ ph + 3δ + 4ε ≤ Ω1. Therefore

T (S2
m) ≤ 2(m + 1)(δ + ε)

(2m − 1)δ + 2mε + θ
Ω2 ≤ 2(m + 1)(δ + ε)

(2m − 1)δ + 2mε
Ω2 ≤ 2m + 2

2m − 1
Ω2.

Proof of Lemma 3: If θ ≤ δ ≤ pi,∀i, then either S2
m is optimal (by Lemma 1) or T (S2

m) =

(m + 2)δ + 2(m + 1)ε + mθ ≤ 2(m + 1)(δ + ε) ≤ Ω1. That θ ≤ δ ≤ pi, ∀i, implies T (S2
m) = Ω2

is proven in Geismar et al. (2006). If δ ≤ θ, and ph ≤ (2m − 1)δ + 2(m − 1)ε, then T (πD) =

2(m + 1)(δ + ε) ≤ (m + 1)(δ + 2ε + θ) ≤ Ω2. That pi ≥ δ,∀i, implies T (πD) = Ω1 is proven in

Dawande et al. (2002).

Proof of Lemma 4: Geismar et al. (2006) show that S2
o is optimal over all dual-gripper cycles

for pi ≤ (δ + θ)/2,∀i. Dawande et al. (2002) show that πU is optimal over all single-gripper

cycles for pi ≤ δ,∀i. Recall that S2
o is a 2-unit cycle. If θ ≤ δ, then

T (S2
o)

2
=

(m + 2)

2
δ + 2(m + 1)ε +

(m + 2)

2
θ +

m∑
i=1

pi ≤ (m + 2)δ + 2(m + 1)ε +
m∑

i=1

pi = Ω1

If δ ≤ θ, then

T (πU) = (m + 2)δ + 2(m + 1)ε +
m∑

i=1

pi ≤ (m + 2)

2
δ + 2(m + 1)ε +

(m + 2)

2
θ +

m∑
i=1

pi = Ω2

Appendix C: Proof of Theorem 2

Proof of Theorem 2:

Step 1: If pi ≤ δ, ∀i, then πU is optimal by Lemma 4.

Step 2: If max1≤i≤m pi + 3δ + 4ε ≥ 2(m + 1)(δ + ε), then πD is optimal by Lemma 2

Step 3: If pi ≥ δ, ∀i, then πD is optimal by Lemma 3.
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Step 4: If |Dδ| ≥ 5m−4
9

, then, from (3), we have

Ω1 ≥
[
m +

5m − 4

9
+ 2

]
δ + 2(m + 1)ε +

∑
i∈Dc

δ

pi

≥
(

14

9
m +

14

9

)
δ + 2(m + 1)ε.

Thus,

T (πD) = 2(m + 1)(δ + ε) ≤ 2(m + 1)(δ + ε)(
14
9
m + 14

9

)
δ + 2(m + 1)ε

Ω1 ≤ 9

7
Ω1.

We now show tightness. Suppose m = 8, p1 = p3 = p5 = p7 = 2δ, and p2 = p4 =

p6 = p8 = ν < δ. An optimal cycle is the basic cycle based on the initial partition:

π1 = (A0, A7, A8, A5, A6, A3, A4, A1, A2), T (π1) = LB1
1 = 14δ + 18ε + 4ν. Algorithm

CCell2 outputs πD, and T (πD) = 18(δ + ε). Therefore, T (πD)/T (π1) → 9/7 as ε → 0 and

ν → 0.

Step 5: The structure of V2 and that |Dδ| ≤ m+2
6

imply that

|V2| ≤ 3|Dδ| ≤ m + 2

2
, so

α ≤
(
m + m+2

2
+ 2

)
δ + 2(m + 1)ε +

∑
i∈V1

pi

(m + |Dδ| + 2)δ + 2(m + 1)ε +
∑

i∈Dc
δ
pi

Ω1.

≤
3
2
(m + 2)

7
6
(m + 2)

Ω1 =
9

7
Ω1.

We now investigate the value of βi, i ∈ V2:

1. By construction, for i ∈ Dδ, βi = pi + 3δ + 4ε. By (4), if T (π̃B) = pi + 3δ + 4ε for

some i, then π̃B is optimal.

2. For i ∈ V2 \ Dδ, βi = pi + 3δ + 4ε +
∑

j∈Xi∪Yi
(pj + δ + 2ε). Since i ∈ Dc

δ, Xi ⊂ Dc
δ,

and Yi ⊂ Dc
δ, we know that pi +

∑
j∈Xi∪Yi

pj ≤
∑

j∈Dc
δ
pj. Cycle π̃B was designed so

that |V2| ≥ 2. This implies that |Xi ∪ Yi| ≤ m − 2. Hence,

βi ≤
∑
j∈Dc

δ

pj + 3δ + 4ε + (m − 2)(δ + 2ε)

=
∑
j∈Dc

δ

pj + (m + 1)δ + 2mε, i ∈ V2 \ Dδ.
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This value is strictly less than LB1
1 . Hence, βi, i ∈ V2 \ Dδ, will not dominate the

cycle time expression.

Step 6: We show that α/LB1
1 ≤ 9

7
by first proving that

|V2 \ Dδ| ≤ 2

7
(m + |Dδ| + 2), (6)

i.e., by establishing a bound on the number of elements of Dc
δ that the algorithm places

into V2. The largest value for |V2 \Dδ| is obtained by maximizing the number of elements

i ∈ Dδ for which |Yi| > 9
56

(m + |Dδ| + 2) + 1. For each such i, two elements of Yi (the

first and the last) will be added to V2 \ Dδ. For example, consider the cell in Figure 5:

m = 12, Dδ = {1, 6, 11, 12}, so |Dδ| = 4 and 9
56

(m + |Dδ|+ 2) + 1 = 3.89. |Y1| = |Y6| = 4,

so indices 2, 5, 7, and 10 will be added to V2. In general, such a maximal |V2 \ Dδ| is
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��
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element of Dδ
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element of V2 \ Dδ

� element of V1 ⊂ Dc
δ

Figure 5: Example of cell with maximal |V2 \ Dδ|.

formed in an m-machine cell if

Dδ =

{
1, 2 +

⌊
9

56
(m + |Dδ| + 2) + 2

⌋
,

3 + 2

⌊
9

56
(m + |Dδ| + 2) + 2

⌋
,

...

z + (z − 1)

⌊
9

56
(m + |Dδ| + 2) + 2

⌋
,

z + (z − 1)

⌊
9

56
(m + |Dδ| + 2) + 2

⌋
+ 1, . . . , m

}
.

Note that this uniquely defines the integer z as

z =

⌈
m⌊

9
56

(m + |Dδ| + 2) + 3
⌋⌉
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and the size of Dδ as

|Dδ| = m − (z − 1)

⌊
9

56
(m + |Dδ| + 2) + 2

⌋
.

(z = 3 and |Dδ| = 4 for the example in Figure 5.) In such a cell, |V2 \ Dδ| = 2(z − 1),

where |Yij | =
⌊

9
56

(m + |Dδ| + 2) + 2
⌋

for ij ∈ Dδ, j = 1, . . . , z − 1, and |Yij | = 0, for

ij ∈ Dδ, j = z, . . . , |Dδ|, and |Xi1| = 0. Thus, there are z − 1 intervals in which the first

machine is an element of Dδ and the next
⌊

9
56

(m + |Dδ| + 2) + 2
⌋

machines are elements

of Dc
δ. (In Figure 5, M1 and M6 are elements of Dδ that are each followed by four

elements of Dc
δ.) The final |Dδ| − z + 1 machines (M11,M12) are elements of Dδ. Hence,

this requires that there are at least (z − 1)
⌊
( 9

56
(m + |Dδ| + 2) + 3)

⌋
+ |Dδ| − z + 1 =

(z − 1)
⌊
( 9

56
(m + |Dδ| + 2) + 2)

⌋
+ |Dδ| machines in the cell. To prove (6) we must show

that our algorithm cannot add another machine to V2 \ Dδ, if 2(z − 1) = 2
7
(m + |Dδ| +

2). For the algorithm to add another machine to V2 \ Dδ, there must be an additional⌊
9
56

(m + |Dδ| + 2) + 1
⌋

elements of Dc
δ between any pair of the last |Dδ| − z + 1 elements

of Dδ. We claim that such a configuration is infeasible. If it were feasible, then

(z − 1)

⌊(
9

56
(m + |Dδ| + 2) + 2

)⌋
+ |Dδ| +

⌊
9

56
(m + |Dδ| + 2) + 1

⌋
≤ m

⇒ (z − 1)

(
9

56
(m + |Dδ| + 2) + 1

)
+ |Dδ| + 9

56
(m + |Dδ| + 2) ≤ m. (7)

Because |Dδ| > m+2
6

, we have m + |Dδ| + 2 > 7
6
(m + 2) and

z − 1 = 1
7
(m + |Dδ| + 2) > m+2

6
. Thus, (7) must satisfy

m + 2

6

(
9

56
· 7

6
(m + 2) + 1

)
+

m + 2

6
+

9

56
· 7

6
(m + 2) ≤ m

(m + 2)(3m + 22) + 34(m + 2) ≤ 96m

3m2 − 34m + 112 ≤ 0,

which is a contradiction. Therefore, |V2 \ Dδ| ≤ 2
7
(m + |Dδ| + 2).
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Thus,

α

LB1
1

≤ (m + |Dδ| + 2
7
(m + |Dδ| + 2) + 2)δ + 2(m + 1)ε +

∑
j∈V1

pj

(m + |Dδ| + 2)δ + 2(m + 1)ε +
∑

j∈Dc
δ
pj

≤
9
7
(m + |Dδ| + 2)

m + |Dδ| + 2
=

9

7
.

We now show that βi ≤ 9
7
max{LB1

1 , LB1
2}, for all i ∈ V2. First, either βi ≤ 9

7
LB1

2 or

βi

LB1
2

=
pi + 3δ + 4ε +

∑
j∈Xi∪Yi

(pj + δ + 2ε)

pi + 3δ + 4ε
>

9

7

⇔ 7
∑

j∈Xi∪Yi

(pj + δ + 2ε) > 2(pi + 3δ + 4ε).

Therefore,

βi

LB1
1

≤
9
2

∑
j∈Xi∪Yi

(pj + δ + 2ε)

(m + |Dδ| + 2)δ + 2(m + 1)ε +
∑

i∈Dc
δ
pi

=

∑
j∈Xi∪Yi

(7
2
pj + 9

2
(δ + 2ε)) +

∑
j∈Xi∪Yi

pj

(m + |Dδ| + 2)δ + 2(m + 1)ε +
∑

i∈Dc
δ
pi

≤
∑

j∈Xi∪Yi

(
7
2
pj + 9

2
(δ + 2ε)

)
(m + |Dδ| + 2)δ + 2(m + 1)ε

[Xi ∪ Yi ⊂ Dc
δ]

<
|Xi ∪ Yi|(8δ + 9ε)

(m + |Dδ| + 2)δ + 2(m + 1)ε
. [pj < δ, j ∈ Xi ∪ Yi]

Because |Xi ∪ Yi| ≤ 9
56

(m + |Dδ| + 2), for i ∈ Dδ, and |Dδ| < 5m−4
9

(by Step 4),

βi

LB1
1

≤ (m + |Dδ| + 2)(8 · 9
56

δ + 9 · 9
56

ε)

(m + |Dδ| + 2)δ + 2(m + 1)ε
≤ 9

7
.

Appendix D: Proof of Lemma 5

Proof of Lemma 5: We find the worst case bound and show that it is less than or equal to

3/2. The coefficient of θ in T (Sa) (equation (5)) cannot be greater than its coefficient in 2LB2
1 ,

so the largest value for T (Sa)/2LB2
1 occurs when θ = 0. Since Dc

2 = U5 ∪ U6 ∪ U7 ∪ U9 in cycle

8



Sa, we have

T (Sa)

2LB2
1

≤
(2m + 4 − u0 − u1 − u9)δ + 4(m + 1)ε +

∑
i∈U5∪U7

pi + 2
∑

i∈U6∪U9

pi

[2(m + 1) − |Dc
2|]δ + 4(m + 1)ε + 2

∑
i∈Dc

2

pi

≤ 2m + 4 − u0 − u1 − u9

2(m + 1) − |Dc
2|

. (8)

First consider the case in which U9 = ∅. The following cell has the largest |Dc
2| for which

algorithm DGR-Cell assigns no machine to U9: m = 3k, p3j−2 < (δ + θ)/2, p3j < (δ + θ)/2,

p3j−1 ≥ (δ + θ)/2 (but the p3j−1 are not large enough to cause positive partial waiting), j =

1, . . . , k, so |D2| = k and |Dc
2| = 2k. Thus, this cell has k−1 runs with s = 2, plus {1,m} ⊂ Dc

2,

so the algorithm makes the assignments 58668668 · · · 86687. Thus, bounding inequality (8)

becomes

T (Sa)

2LB2
1

≤ 2m + 2

2(m + 1) − |Dc
2|

≤ 6k + 2

4k + 2
<

3

2
.

Now suppose U9 �= ∅. If a run with length s ≥ 2 begins at r1 = 1 or ends at rG +sG−1 = m,

then s − 1 elements (i.e., at minimum one-half of the elements) of that run are placed into U9.

For any other run with length s ≥ 3, s−2 elements (i.e., at minimum one-third of the elements)

of that run are placed into U9. Therefore, because we want to maximize |Dc
2| − u9, we consider

only those runs with s = 3 and r1 �= 1, rG + sG − 1 �= m. In each of these G runs, for

g = 1, . . . , G, we have rg ∈ U7, rg+1 ∈ U9, rg+2 ∈ U5; rg+3 ∈ U8 to separate the runs. Hence,

the cell that maximizes |Dc
2| − u9 and therefore has the largest value for (8) causes algorithm

DGR-Cell to make case assignments so that the cycle begins with one trio assigned 586 and 
−1

trios assigned 686, has a machine in Case 8 (to separate the runs), then has G quartets assigned

7958, and concludes with j − 
 − 1 trios assigned 686 and one trio assigned 687. Therefore,

m = 4G + 3j + 1, |Dc
2| = 3G + 2j, u9 = G, so

T (Sa)

2LB2
1

≤ 2(4G + 3j + 1) + 4 − G

2(4G + 3j + 2) − 3G − 2j
=

7G + 6j + 6

5G + 4j + 4
≤ 3

2
.

Appendix E: Proof of Lemma 7

Proof of Lemma 7: We use the fact that if q ∈ U8, then Mq is reloaded immediately after

9



it is unloaded. We can write the waiting time expressions for any q ∈ U8 as follows:

w1
q = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0, ŵ1
q −

m∑
j = q + 1
j ∈ U8

w2
j −

q−1∑
j = 1
j ∈ U8

w1
j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9)

w2
q = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0, ŵ2
q −

m∑
j = q + 1
j ∈ U8

w1
j −

q−1∑
j = 1
j ∈ U8

w2
j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (10)

where ŵ1
q and ŵ2

q are expressions of the form

ŵ1
q = pq − aδ − bε − cθ −

m∑
j = q + 1
j ∈ U5

pj −
m∑

j = 1
j ∈ U6

pj −
m∑

j = q + 1
j ∈ U7

pj − 2
m∑

j = q + 1
j ∈ U9

pj

ŵ2
q = pq − dδ − eε − fθ −

q−1∑
j = 1
j ∈ U5

pj −
m∑

j = 1
j ∈ U6

pj −
q−1∑
j = 1
j ∈ U7

pj − 2

q−1∑
j = 1
j ∈ U9

pj,

and a, b, c, d, e, f ≥ 0 are constants. From (9) and (10) we get

m∑
j = q + 1
j ∈ U8

w2
j +

q∑
j = 1
j ∈ U8

w1
j = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

j = q + 1
j ∈ U8

w2
j +

q−1∑
j = 1
j ∈ U8

w1
j , ŵ1

q

⎫⎪⎪⎪⎬⎪⎪⎪⎭
m∑

j = q + 1
j ∈ U8

w1
j +

q∑
j = 1
j ∈ U8

w2
j = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
m∑

j = q + 1
j ∈ U8

w1
j +

q−1∑
j = 1
j ∈ U8

w2
j , ŵ2

q

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Therefore, if wi
q > 0, then ŵi

q is the robot’s total partial waiting time while M i
q is processing,

i = 1, 2. These two equations also imply the following system of 2u8 inequalities:

m∑
j = q + 1
j ∈ U8

w2
j +

q∑
j = 1
j ∈ U8

w1
j ≥ max

{
0, ŵ1

q

}
, q ∈ U8, (11)

m∑
j = q + 1
j ∈ U8

w1
j +

q∑
j = 1
j ∈ U8

w2
j ≥ max

{
0, ŵ2

q

}
, q ∈ U8. (12)
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Let q′ = argmaxq∈U8

{
max{0, ŵ1

q} + max{0, ŵ2
q}

}
. We show that W = w1

q′ + w2
q′ , where

w1
q′ = max{0, ŵ1

q′}, w2
q′ = max{0, ŵ2

q′}, and w1
q = w2

q = 0 for q �= q′, is a minimal solution to the

system of inequalities (11) and (12). To prove this, we show that (a) W ≥ w1
q′ + w2

q′ , and that

(b) W = w1
q′ + w2

q′ is a feasible solution to the system of inequalities (11) and (12):

a) That W ≥ w1
q′ + w2

q′ follows from summing inequalities (11) and (12) for q = q′:

W =
m∑

j = q′ + 1
j ∈ U8

w2
j +

q′∑
j = 1
j ∈ U8

w1
j +

m∑
j = q′ + 1

j ∈ U8

w1
j +

q′∑
j = 1
j ∈ U8

w2
j ≥ max

{
0, ŵ1

q′

}
+ max

{
0, ŵ2

q′

}
.

b) Suppose q > q′. For (11) and (12) to be satisfied, we must have w1
q′ ≥ ŵ1

q and w2
q′ ≥ ŵ2

q ,

which follow from (9) and (10):

0 = w1
q = max

{
0, ŵ1

q − w1
q′

}
⇒ w1

q′ ≥ ŵ1
q

0 = w2
q = max

{
0, ŵ2

q − w2
q′

}
⇒ w2

q′ ≥ ŵ2
q .

If q < q′, then we must have w2
q′ ≥ ŵ1

q and w1
q′ ≥ ŵ2

q , which follow similarly from (9)

and (10).

By Lemma 6, if w1
q′ > 0 and w2

q′ > 0, then Sa is optimal. Otherwise, W = wi
q′ > 0 and w3−i

q′ = 0,

i ∈ {1, 2}.

Appendix F: Proof of Theorem 3

Proof of Theorem 3: If max1≤i≤m pi ≥ (m + 2)δ + 2mε + (m− 1)θ, then cycle S2
m is optimal

by Lemma 1. If pi ≥ δ,∀i, then cycle S2
m is optimal by Lemma 3. If pi ≤ (δ + θ)/2, ∀i, then

cycle S2
o is optimal by Lemma 4. If W = 0 in cycle Sa, then Sa provides a 3/2-approximation

to the optimal per unit cycle time by Lemma 5.

We now analyze the case in which W > 0 in cycle Sa. The proof of Lemma 7 shows that we

need only to consider W = wi
q, q ∈ U8, where either i = 1 or i = 2. First suppose that w1

q > 0.

In this case, we can find T (Sa) by adding pq and the times for robot actions and full waiting

that occur between the start of the unloading of M1
q and the completion of the loading of this

usage.
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We first compute the robot movement times in this expression for T (Sa). After unloading

M1
q , rotating its grippers, and loading M2

q , the robot travels to each machine Mj, j > q,

j ∈ U5 ∪ U6 ∪ U7 ∪ U8, then to O (if u1 = 0), to I, and to each machine M1, . . . , Mq, before

unloading M2
q , rotating its grippers, and reloading M1

q . Hence, the total movement time in Sa

is (q + 2 − u1 + |{j : j > q, j ∈ U5 ∪ U6 ∪ U7 ∪ U8}|)δ.
Now consider the load/unload, gripper rotation, and full waiting times. For clarity, we

explicitly calculate only the load/unload times within the text. After unloading M1
q but before

visiting I, the robot unloads each Mj for which j ∈ U5 and j > q, and it loads each Mj

for which j ∈ U7 and j > q (this requires time |{j : j > q, j ∈ U5 ∪ U7}|ε). During this

same segment of the cycle, the robot loads, waits, and unloads (respectively, unloads, rotates

grippers, and loads) at each Mj, j ∈ U6 (resp., j ∈ U8), j ≥ q (time 2|{j : j ≥ q, U6 ∪ U8}|ε).
Before visiting I, the robot may load O (time (1 − u1)ε). After visiting I (time (1 + u0)ε) but

before loading M1
q , the robot loads, waits, unloads, rotates grippers, and reloads (respectively

unloads, rotates grippers, reloads, waits, and unloads) at each Mi, i ∈ U5 (resp., i ∈ U7), i < q

(time 3|{i : i < q, i ∈ U5 ∪ U7}|ε). At each Mi, i ∈ U6 (resp., i ∈ U8), i ≤ q, the robot loads,

waits, and unloads (resp., unloads, rotates grippers, and loads) (time 2|{i : i ≤ q, U6 ∪ U8}|ε).
For each machine Mi, i ∈ U9, i < q, the robot loads, waits, unloads, rotates grippers, reloads,

waits, and unloads (time 4|{i : i < q, i ∈ U9}|ε). This analysis generates the following cycle

time expression if W = w1
q :

T (Sa) = pq + (q + 2 − u1 + |{j : j > q, j ∈ U5 ∪ U6 ∪ U7 ∪ U8}|)δ
+[4|{i : i < q, i ∈ U9}| + 3|{i : i < q, i ∈ U5 ∪ U7}| + 2(|{U6 ∪ U8}| + 1)

+|{j : j > q, j ∈ U5 ∪ U7}| + 2 + u0 − u1]ε

+(|U8| + |{i : i < q, i ∈ U5 ∪ U7 ∪ U9}| + u0 + 1)θ

+2

q−1∑
i = 1
i ∈ U9

pi +

q−1∑
i = 1

i ∈ U5 ∪ U7

pi +
∑
i∈U6

pi.

Note that q+ |{j : j > q, j ∈ U5∪U6∪U7∪U8}| ≤ m, u5 +u7 +u8 +u9 ≤ m, and 0 ≤ u0, u1 ≤ 1.
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Thus,

T (Sa) ≤ pq + (m + 2)δ + 4(m + 1)ε + (m + 2)θ + 2
∑
i�∈U8

pi. (13)

We further bind T (Sa) by binding pq by using LB2
2 . If T (Sa)/2LB2

2 ≤ 3/2, then the theorem is

proven. Otherwise, T (Sa) > 3pq + 3θ + 6ε, so, by (13), we have

3pq + 3θ + 6ε < pq + (m + 2)δ + 4(m + 1)ε + (m + 2)θ + 2
∑
i�∈U8

pi

pq <
m + 2

2
δ + (2m − 1)ε +

m − 1

2
θ +

∑
i�∈U8

pi

⇒ T (Sa) <
3

2
(m + 2)δ + (6m + 3)ε +

3

2
(m + 1)θ + 3

∑
i�∈U8

pi.

Recall that

2LB2
1 = (2m + 2 − |Dc

2|)(δ + θ) + 4(m + 1)ε + 2
∑
i∈Dc

2

pi

= (2m + 2 − u5 − u6 − u7 − u9)(δ + θ) + 4(m + 1)ε + 2
∑
i�∈U8

pi.

Since u5 + u6 + u7 + u9 ≤ m − 1, it follows that

2LB2
1 ≥ (m + 3)(δ + θ) + 4(m + 1)ε + 2

∑
i�∈U8

pi.

Therefore,

T (Sa)

LB2
1

<
3
2
(m + 2)δ + (6m + 3)ε + 3

2
(m + 1)θ + 3

∑
i�∈U8

pi

(m + 3)(δ + θ) + 4(m + 1)ε + 2
∑

i�∈U8
pi

<
3

2
.

The proof for w2
q > 0 is similar.

To demonstrate asymptotic tightness, let pi = ν < (δ + θ)/2 for i = 1, . . . , m − 1, and

pm = m+1.9
2

δ + m−1
2

θ. It follows that

T (Sa) = pm + (m + 2)δ + (4m + 2)ε + (m + 2)θ + (2m − 3)ν

=

(
3

2
m + 2.95

)
δ + (4m + 2)ε +

3

2
(m − 1)θ + (2m − 3)ν,

2LB2
1 = (m + 3)(δ + θ) + 4(m + 1)ε + 2(m − 1)ν

2LB2
2 = 2pm + 4ε + 2θ = (m + 1.9)δ + 4ε + (m + 1)θ.

13



Therefore,

T (Sa)

2LB2
1

=

(
3
2
m + 2.95

)
δ + (4m + 2)ε + 3

2
(m − 1)θ + (2m − 3)ν

(m + 3)(δ + θ) + 4(m + 1)ε + 2(m − 1)ν
−→ 3

2

T (Sa)

2LB2
2

=

(
3
2
m + 2.95

)
δ + (4m + 2)ε + 3

2
(m − 1)θ + (2m − 3)ν

(m + 1.9)δ + 4ε + (m + 1)θ
−→ 3

2

as m → ∞, ε → 0, and ν → 0.
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