Online Appendix for "Approximations to Optimal k-Unit Cycles for Single-Gripper and Dual-Gripper Robotic Cells
by H. Neil Geismar, Lap Mui Ann Chan, Milind Dawande, and Chelliah Sriskandarajah

Appendix A: Proof of Theorem 1

We first consider k£ even; the result for k odd easily follows. Let u; denote the number of
sequences o corresponding to Case j that occur in a k-unit cycle, for all j and r (j = 2,3,...,9,
andr=1,..., g) and machines M;, i = 1,...,m. As there are g sequences for each machine in
a k-unit cycle, we have mTk = Uy + U3 + Us + Us + ug + u7 + ug + ug. Let U; be the collection of
indices of machines in Case j. If a machine M; has s sequences in Case j, then there will be s
instances of i in U;. ug (respectively, uy) represents the number of visits to / (O) during which
the robot unloads (loads) two parts.

By adding residence times corresponding to the possible cases for a machine in a dual-

gripper robot cell, we get a lower bound for 7)., the aggregate residence time of the robot at all

machines for a k-unit cycle:

T, > 2(m+ 1)ke+ (ug + uy + ug + us + uy + 2ug + ug)0

+ZP¢+Z}%+QZP¢+ZM+QZP¢~

i€Us i€Us i€Us i€eUr €Uy

The computation of required movement time is identical to that of Geismar et al. (2006):

Tt = (m + 2)]{25 + (—UO —u; + 2U2 + ug + ug — Ug)é

Hence, we have lower bound T, + 7;, which can be considered as a fixed amount ((m + 2)kd +
2(m—+1)ke) plus an amount that varies according to which case each sequence is assigned. This
is represented for machines M, ..., M,, by the summation term in expression (1). Table 4
lists the minimum time added to the cycle time for each 2-unit sequence that is assigned to a
particular case. The last term in expression (1) corresponds to the time added to the per unit
cycle time if ug = u; = 1.

The added time for Case 5 or Case 7 is not included in the summation term because
p; + 0 > min{2p;, 20}. Similarly, the added times for Cases 3 and 4 are not included because
pi + 9 > min{2p;,26} and 0 + 0 > min{24, 20}, respectively.

For k odd, a lower bound can be found by considering the cycle to be the concatena-
tion of (k — 1)/2 subsequences (M}, 1,01, M, 1,02, M5, 03, M, 04), and a subsequence

(M, 01, M}, 02). Note that alower bound for robot actions in a subsequence (M{,, o1, M}, 03)
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Case Added time
Case 0, up =1 )
Case 1, u; =1 0—9
Case 2 26

Case 3 pi +0
Case 4 0+46

Case 5 pi+0
Case 6 2p;

Case 7 pi+0
Case 8 20

Case 9 2p; +0 —6

Table 4: Variable amount added to the cycle time for each case.

is (m+2)d +2(m + 1)e+ > min{p;, §, 0}, which is greater than or equal to the right-hand

side of (1). Therefore, (1) is a lower bound for the per unit cycle time for k& odd, too. n

Appendix B: Proofs of Lemmas 1 through 4

Proof of Lemma 1:
a) If maxp; > (m+2)0 + 2me+ (m —1)0, then S2, = p;, + 2¢ + 6, which is a lower bound on
the per unit cycle time of a dual-gripper robot cell (Geismar et al. 2006). The condition
6 < 39 + 2¢ ensures that pj, + 2 + 0 < p;, + 30 + 4e, which is a lower bound for the per

unit cycle time of a single-gripper robot cell (Dawande et al. 2002).

b) pn > (m+2)d+2me+(m—1)0 and 6 > 35+ 2¢ imply that 7p = p, +30+4e < pj, +2e+0,

so mp is optimal over all single-gripper and dual-gripper cycles. n

Proof of Lemma 2:

a) Q' > pp + 35 +4e =T(7p).
b) T(mp) = pn + 35 + de < pp, + 26 + 0 < Q%

c) 2 >pp+2+60=T(rp) — (30 +2¢ —0).
The condition 6 < 30 + 2¢ implies that the fraction

prn+ 30 +4e_,
T <—0Q
(Tp) < ph+ 2€+0
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is maximized by minimizing pj,. Therefore

T(rp) < 2(m+1)(d +¢€) 0 < 2(m+1)(5+6)92:m+192.
(2m —1)6 + 2me + 0 2m(0 + €) m

d) Either S2, is optimal (by Lemma 1) or T(S2) = (m + 2)d + 2(m + 1)e + mf < 2(m +

1)(0 4 €) < py + 30 + 4e < Q. Therefore

T(S2) < 2m+ D0+ o 2Am+1)E+6) p  2m 2

0%
T (2m—=1)04+2me+6 T 2m—1)6+2me T 2m—1

Proof of Lemma 3: If < § < p;, Vi, then either S? is optimal (by Lemma 1) or T/(S2) =

(m+2)0+2(m+1)e+mb <2(m+1)(0+¢€) < Q. That 0 < § < p;, Vi, implies T(5Z) =

is proven in Geismar et al. (2006). If § < 6, and p;, < (2m — 1)d + 2(m — 1)¢, then T'(7p) =

2(m+1)(0 +¢€) < (m+1)(0 + 2¢ + 0) < Q2. That p; > 6, Vi, implies T(mp) = Q' is proven in

Dawande et al. (2002).

Proof of Lemma 4: Geismar et al. (2006) show that S? is optimal over all dual-gripper cycles

for p; < (6 +0)/2,Vi. Dawande et al. (2002) show that 7y is optimal over all single-gripper

cycles for p; < §,Vi. Recall that S? is a 2-unit cycle. If § < §, then

m m

T(S2)  (m+2) (m+2)

_ _ 1
= 5+2(m+1)e+TH+Zpi§(m+2)5+2(m+1)e+2pi = 0

2 2 ’ ,
i=1 i=1

If 6 <6, then

(m+2)

(m+2) .
§+2(m+1)e+ 5 9+sz‘

T(ry) = (m+2)5+2(m+1)e+ Y p; <
i=1 i=1

Appendix C: Proof of Theorem 2

Proof of Theorem 2:

Step 1: If p; <9, Vi, then my is optimal by Lemma 4.

Step 2: If maxj<;<,, pi + 36 + 4€ > 2(m + 1)(6 + €), then 7p is optimal by Lemma 2

Step 3: If p; > 9, Vi, then mp is optimal by Lemma 3.
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Step 4: If |Dy| > 222 then, from (3), we have

Sm — 4

o > [m+ +2}5+2(m+1)6+219i

i€D§

v

<1§4m + %) d+2(m+ e

Thus,

2(m+1)(d +¢€)

T(mp) =2(m+1)(6 +¢€) < (Hm+ ) o4+ 2(m+ 1)e

O < 9(21.
-7

We now show tightness. Suppose m = 8, p1 = p3 = ps = pr = 20, and py = py =
pe = pg = v < 6. An optimal cycle is the basic cycle based on the initial partition:
7 = (Ao, A7, Ag, As, Ag, Az, Ay, Ay, Ag), T(m) = LB{ = 145 + 18¢ + 4v. Algorithm
CCell2 outputs mp, and T'(wp) = 18(5 + €). Therefore, T'(7p)/T(m1) — 9/7 as € — 0 and

v — 0.

Step 5: The structure of V5 and that |Ds| < mT” imply that

2
Vil < 31Ds < 7=, s

(m+mTH-i-Q)(S—FQ(m—i-l)E—}—ZiGVIpin
(m+ |Ds| +2)0 +2(m+1)e+ D cpe i
%(m+2) 193

< /L0 =-=0
— Im+2) 7

a <

We now investigate the value of 3;,7 € Va:

1. By construction, for i € Dy, 5; = p; + 30 + 4e. By (4), if T(7g) = p; + 36 + 4e for

some ¢, then 7g is optimal.

2. Fori € Vo \ Ds, B = pi + 30 +4de + 3 iy, (pj + 6 + 2¢). Since i € D§, X; C Dj,
and Y; C Df, we know that p; + iy y. pj < ZjeDg p;. Cycle mp was designed so
that || > 2. This implies that | X; UY;| < m — 2. Hence,

Bi < ij+35+4e+(m—2)(5—|—26)

JED§

= ) pi+(m+1)5+2me, i € Vy\ Dy,

JjeDS



This value is strictly less than LB}. Hence, 3;,i € Vi \ D;s, will not dominate the

cycle time expression.
Step 6: We show that a/LB] < % by first proving that
2
Va\ Dol < Z(m + D3] +2), (©

i.e., by establishing a bound on the number of elements of D§ that the algorithm places
into V5. The largest value for |V3 \ Ds| is obtained by maximizing the number of elements
i € Ds for which |Yj| > 2(m + |Ds| +2) + 1. For each such i, two elements of Y; (the
first and the last) will be added to V2 \ Ds. For example, consider the cell in Figure 5:
m =12, Dy = {1,6,11,12}, so |Ds| = 4 and Z(m+|Ds| +2) +1 = 3.89. |V} = |Y¢| = 4,
so indices 2, 5, 7, and 10 will be added to V5. In general, such a maximal |V; \ Ds| is

O @« o OO @ . OO0

Mo Ms My M5 Mg M7 Mg My Mo Myy Mo

O element of Dy

@ element of V5 \ Ds
e element of V; C Dy

Figure 5: Example of cell with maximal |V5 \ Dsl.

formed in an m-machine cell if

9
Ds = {1, 2+ {%(m+|D5|+2)+2J,

9
3+2{%(m+|Dé|+2)+2J,

z+(z—1) {%(m+|D(g|+2)+zJ,

z+(z—1) L%(m+|DJ|+2)+2J +1,...,m}.

Note that this uniquely defines the integer z as

°T h%(m+|D5|+2)+3J
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and the size of Dj as

|Ds| =m — (2 —1) L%( +\D5|+2)+2J.

(z = 3 and |Ds| = 4 for the example in Figure 5.) In such a cell, |V5\ Ds| = 2(z — 1),
where |Y;,| = |Z(m+ |Ds|+2)+2] for i; € D5, j = 1,...,2— 1, and |Y;,| = 0, for
i; € Ds, j=z,...,|Ds|, and | X;,| = 0. Thus, there are z — 1 intervals in which the first
machine is an element of Ds and the next |2 (m + |Ds| + 2) + 2| machines are elements
of D§. (In Figure 5, M; and Mgy are elements of Djs that are each followed by four
elements of D§.) The final |Ds| — z + 1 machines (M, M;s) are elements of Ds. Hence,
this requires that there are at least (z — 1) [(&(m + [Ds| +2) +3)| + [Ds| — 2+ 1 =
(z = 1) [(&(m + |Ds| + 2) + 2)| 4+ | Ds| machines in the cell. To prove (6) we must show
that our algorithm cannot add another machine to V5 \ Dy, if 2(z — 1) = 2(m + |Ds| +
2). For the algorithm to add another machine to V5 \ Ds, there must be an additional
| 2(m + |Ds| +2) + 1] elements of D§ between any pair of the last |Ds| — z + 1 elements

of Ds. We claim that such a configuration is infeasible. If it were feasible, then

9 9
(z—l){<%(m+|D,;]+2)+2>J—HD5|—|—{%(m+|D5|+2)+1J < m
9 9
=(z—-1) %(m+|D5|+2)+1 +1D5|+%(m+yD5|+2) < m. (7)
Because |Ds| > 222 we have m + |Ds| +2 > £(m + 2) and
z—1=2(m+|Ds| +2) > ™. Thus, (7) must satisfy
m+2/(9 7 m+ 2 9 7
— (== N+1)+—+— = 2) <
6 (56 ' +)+>+ 6 Ta5gmtd = m
(m+2)(3m+22) +34(m+2) < 96m

3m? —34m + 112 < 0,

which is a contradiction. Therefore, |V5 \ Ds| < 2(m + |Ds| + 2).



Thus,

a  _ (m + |Ds| + 2(m + |Ds| +2) +2)0 +2(m + 1)e + 3.y, P
LBl — (m+\D5\+2)5+2(m+1)e+2je,3§pj

2(m+|Ds|+2) 9

m+|Ds|+2 T
We now show that 3; < 2max{LB{, LB3}, for all i € V5. First, either 3; < 2LBj or

Bi . pi+35+46+2jexiun(pj+5+2€) - 9
LBY pi + 30 + de 7
& T D (pj+0+2¢) >2(p; + 36 + 4e).

JEX;UY;

Therefore,

Bi < 3 Y iex,uy; (P 0+ 2¢€)
LBi = (m+|Ds|+2)6+2(m+1L)e+ 3 cpepi

ZjeXiuYi(gpj + %(5 +2¢)) + ZjeXiUYi pj
(m +|Ds| +2)0 + 2(m + 1)e + ZiEDg Di

D jexiy; (305 + 30+ 26))

X, UY; C DS
(m+ Dol +25 +2(mr e O

| X U Y;|(80 + 9¢)

< .
(m +|Ds| +2)0 +2(m + 1)e

pj <0, j€X;UY]

Because | X; UY;| < Z(m + |Ds| 4 2), for i € Dy, and |Ds| < 222 (by Step 4),

B - (m+|D5|+2)(8-%5+9-%6)
LBl =  (m+|Ds|+2)0 +2(m+ 1)e

IN

9
?. u
Appendix D: Proof of Lemma 5

Proof of Lemma 5: We find the worst case bound and show that it is less than or equal to
3/2. The coefficient of @ in T'(S,) (equation (5)) cannot be greater than its coefficient in 2L B2,
so the largest value for T'(S,)/2LB? occurs when 6 = 0. Since DS = Us U Ug U Uz U Uy in cycle



S,, we have

Cm+4—uy—u —ug)d +4(m+De+ > pi+2 >, pi

T(S.) < i€UsUU7 i€UsUUy
2LB} — 2(m+1) — |D§|]6 +4(m+1)e+2 > p;
ieDg

2m + 4 — ug — up — Ug (8)
2(m+1)—|D§|

First consider the case in which Uy = (). The following cell has the largest |DS| for which
algorithm DGR-Cell assigns no machine to Ug: m = 3k, p3j_o < (6 +6)/2, p3; < (0 +6)/2,
p3j—1 > (0 + 0)/2 (but the ps;_; are not large enough to cause positive partial waiting), j =
1,...,k,s0|Ds| = k and |D§| = 2k. Thus, this cell has k—1 runs with s = 2, plus {1, m} C D5,
so the algorithm makes the assignments 58668668 - - - 86687. Thus, bounding inequality (8)
becomes

T(S.) _ 2m+2  _6k+2 3

— <
2LBZ ~ 2(m+1)—|DS| ~ 4k+2 2

Now suppose Uy # (). If a run with length s > 2 begins at r; = 1 or ends at r¢+sg—1=m,
then s — 1 elements (i.e., at minimum one-half of the elements) of that run are placed into Us.
For any other run with length s > 3, s —2 elements (i.e., at minimum one-third of the elements)
of that run are placed into Uy. Therefore, because we want to maximize |D§| — ug, we consider
only those runs with s = 3 and r; # 1, r¢ + s¢ — 1 # m. In each of these G runs, for
g=1,...,G, we have vy € Uz, 7g41 € Uy, 1412 € Us; 1413 € Ug to separate the runs. Hence,
the cell that maximizes |D§| — ug and therefore has the largest value for (8) causes algorithm
DGR-Cell to make case assignments so that the cycle begins with one trio assigned 586 and ¢/—1
trios assigned 686, has a machine in Case 8 (to separate the runs), then has G quartets assigned
7958, and concludes with j — ¢ — 1 trios assigned 686 and one trio assigned 687. Therefore,
m=4G +3j + 1, |D§| = 3G + 27, ug = G, so

T(S.) _ 214G+3j+1)+4-G _7G+6j+6 _3
2LB? ~ 204G +3j+2)—3G—2j 5G+4j+4~ 2

Appendix E: Proof of Lemma 7

Proof of Lemma 7: We use the fact that if ¢ € Us, then M, is reloaded immediately after

9



it is unloaded. We can write the waiting time expressions for any ¢ € Uy as follows:

;

m q—1
1 1 2 1
w, = maxq 0,w} g w; w; 9)
j=q+1 j=1
L jeUs jeUs
( 3\
m q—1
2 ) 1 2
w, = max{ 0, w2 — E w; — w; o, (10)
J=q+1 j=1
L j€Us j€Us )

where w; and w3 are expressions of the form

w(} = pq—aé—bG—CG_ Z b — Z p; — Z p]_2 Z Pj

j=q+1 j=1 j=q+1 j=q+1
j€eUs Jj€Us jeUr Jj €Uy
q—1 m q—1 q—1

2 _

w? = py—di—ee—f0— > pi— > pi— > pi—2 Y pp
j=1 j=1 j=1 j=1
j€Us Jj€Us jeUr Jj €Uy

and a, b, c,d, e, f > 0 are constants. From (9) and (10) we get

.
m q m
g w?—f— E wjl- = max E w + 5 w wl
J=q+1 j=1 J=q+1 j=1
Jj€EUs j€Us . j €Us JjEUs )
( 3\
m q m
1 2 T2
wj+ w; = max w + w wy
j=q+1 j=1 j=q+1 j=1
jeUs jeUs L j€Us jeUs

Therefore, if wfl > 0, then I/U\é is the robot’s total partial waiting time while Mé is processing,

1 =1,2. These two equations also imply the following system of 2ug inequalities:

m q

Z JQ Z ; max{(),wé}, q € Us, (11)
j=q+1 =1

7 €Us EU

m q o

Z u;]l.+ Z w? > max{(),wg}, q € Us. (12)
j=q+1 j=1

jEUs jeUs

10



Let ¢ = argmax,cp, {max{o,z/u\;} +max{0,1,/u\g}}. We show that W = w,, 4+ w7, where
1 _ 1 2 _ - 1,2 _ - o -
wy = max{0,wy }, w; = max{0,w; }, and w, = w; = 0 for ¢ # ¢, is a minimal solution to the
system of inequalities (11) and (12). To prove this, we show that (a) W > w + w? > and that
(b) W = w,, + w}, is a feasible solution to the system of inequalities (11) and (12):

a) That W > w,, +w}, follows from summing inequalities (11) and (12) for ¢ = ¢":

m g m q — —
W = g w?—i— E ’w]l- + E ]1 g 2 > max{O,w;,} + max {O,wg,}.
j=qd+1 j=1 j=qd+1 j=1
jeUs jeUs jeUs jeU

b) Suppose ¢ > ¢'. For (11) and (12) to be satisfied, we must have wy, > w ; and w? > w
which follow from (9) and (10):

0= w, :maX{O,w;—w;/} = wy > w}
0= wg = max {O,wg — wz,} = wgl > wi.
If ¢ < ¢, then we must have wg, > w, and w; 2 Z, which follow similarly from (9)

and (10).

By Lemma 6, ifw > (0 and w > 0, then S, is optimal. Otherwise, W = w > 0 and wg’fi =0,
i€ {l,2}. ]

Appendix F: Proof of Theorem 3

Proof of Theorem 3: If maxi<;<,, p;i > (m+2)d +2me+ (m — 1)6, then cycle S, is optimal
by Lemma 1. If p; > 4, Vi, then cycle S2, is optimal by Lemma 3. If p; < (6 + 6)/2, Vi, then
cycle 52 is optimal by Lemma 4. If W = 0 in cycle S,, then S, provides a 3/2-approximation
to the optimal per unit cycle time by Lemma 5.

We now analyze the case in which W > 0 in cycle S,. The proof of Lemma 7 shows that we
need only to consider W = wfp q € Ug, where either ¢+ = 1 or ¢ = 2. First suppose that w; > 0.
In this case, we can find T'(S,) by adding p, and the times for robot actions and full waiting
that occur between the start of the unloading of M ql and the completion of the loading of this

usage.
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We first compute the robot movement times in this expression for 7°(S,). After unloading
Mql, rotating its grippers, and loading MqQ, the robot travels to each machine M;, j > g,
Jj € Us UUs UU; UUs, then to O (if uy = 0), to I, and to each machine M, ..., M,, before
unloading M, qz’ rotating its grippers, and reloading Mql. Hence, the total movement time in S,
is(g+2—u+|{j:7>q,7€UsUUs UU; UUg}|)d.

Now consider the load/unload, gripper rotation, and full waiting times. For clarity, we
explicitly calculate only the load/unload times within the text. After unloading M, ql but before
visiting I, the robot unloads each M; for which j € Us and j > ¢, and it loads each M;
for which j € U; and j > ¢ (this requires time |[{j : j > ¢,j € Us U Ur}|e). During this
same segment of the cycle, the robot loads, waits, and unloads (respectively, unloads, rotates
grippers, and loads) at each M;, j € Us (resp., j € Ug), j > ¢ (time 2|{j : j > ¢, Us U Ug}|e).
Before visiting I, the robot may load O (time (1 — u)e). After visiting I (time (1 + ug)e) but
before loading Mql, the robot loads, waits, unloads, rotates grippers, and reloads (respectively
unloads, rotates grippers, reloads, waits, and unloads) at each M;, i € Us (resp., i € U;), i < ¢
(time 3|{i : ¢ < q,i € Us UUys}|e). At each M;, i € Ug (resp., i € Us), i < g, the robot loads,
waits, and unloads (resp., unloads, rotates grippers, and loads) (time 2|{i : i < ¢,Us U Ug}|e).
For each machine M;, ¢ € Uy, i < q, the robot loads, waits, unloads, rotates grippers, reloads,
waits, and unloads (time 4|{i : i < ¢,i € Ug}|e). This analysis generates the following cycle

time expression if W = w,:

T(Sa) = pq+(q+2—u1—|—]{j:j>q,j€U5UU6UU7UUg}\)5
+Aa{i:i<qie U +3|{i:i<q,i € UsUUH + 2(|{Us U Us}| + 1)
+{j:j>q,7€UsUUH 4+ 2+ up— ule

+(|Us| + [{i:i < q,i € UsUUy UUg} + ug + 1)0

q—1 q—1

2 e X Y
1=1 i=1 1€Us
i€ Ug i€ Us UUy

Note that ¢+ 1[{j : j > ¢q,7 € UsUUsgUU; UUg}| < m, us+uy+ug+ug < m, and 0 < ug, u; < 1.
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Thus,

T(S)) < pgt+(m+2)8+4(m+1e+(m+2)0+2> p;. (13)
i¢Ug
We further bind T'(S,) by binding p, by using LB3. If T(S,)/2LB3 < 3/2, then the theorem is
proven. Otherwise, T'(S,) > 3p, + 36 + 6¢, so, by (13), we have

3pg+30+ 66 < py+(m+2)5+4(m+ e+ (m+2)0+2> p

1¢€Ug
m+ 2 m—1
Py < Té+(2m—1)e+TQ+Zpi
i¢Ug
3 3
=T(S,) < §(m+2)5+(6m+3)6+5(m+1)9+32pi.
i¢Ug

Recall that

2LBY = (2m+2— D50 +0) +4(m+De+2 3 p

ieD§

= (2m+2—u5—u6—u7—U9)(5+9)+4(m+1)e+22pi.

i¢Usg
Since us + ug + uy + ug < m — 1, it follows that
2LB} > (m+3)(5+0) +4(m+1)e+2)  p;.
i¢Usg
Therefore,
T(S,) - 2(m—+2)8+ (6m +3)e+ 3(m+1)0 + 33,0, Di 3
LB? (m+3)(6+0) +4(m+1)e+23 0, pi 2

The proof for wg > 0 is similar.
To demonstrate asymptotic tightness, let p; = v < (6 +0)/2 for i = 1,...,m — 1, and
P = %1'95 + mT_IG. It follows that

T(Sa) = pm+(Mm+2)5+4 (A4m+2)e+ (m+2)0+ (2m — 3)v

= (;m + 2.95) 0+ (dm+2)e + g(m — 1)+ (2m — 3)v,
2LB; = (m+3)(0+0)+4(m+ 1e+2(m—1)v
2LB; = 2pg, +4e+20=(m+1.9) + de + (m + 1)6.

13



Therefore,

(3m +2.95) 6+ (4m +2)e + 2(m — 1)0 + (2m — 3)v

(m+3)(0+0)+4(m+1)e+2(m—1)v

(3m+2.95) 6 + (4m + 2)e + £(m — 1) + (2m — 3)v
(m+1.9)0 +4e+ (m+1)0

and v — 0.
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